MaHDA6-MaNAC154 module regulates the transcription of cell wall modification genes during banana fruit ripening
文献类型: 外文期刊
第一作者: Chen, Ting-hui
作者: Chen, Ting-hui;Wei, Wei;Shan, Wei;Kuang, Jian-fei;Chen, Jian-ye;Lu, Wang-jin;Yang, Ying-ying;Yang, Ying-ying;Chen, Ting-hui;Yang, Ying-ying
作者机构:
关键词: Banana; Histone deacetylase; NAC transcription factors; Fruit ripening and softening
期刊名称:POSTHARVEST BIOLOGY AND TECHNOLOGY ( 影响因子:7.0; 五年影响因子:6.9 )
ISSN: 0925-5214
年卷期: 2023 年 198 卷
页码:
收录情况: SCI
摘要: Fruit ripening and softening is a complex physiological process that is governed by the expression of a wide range of genes, and histone modification is a critical mechanism for precise gene expression. Although previous studies have indicated that NAC transcription factor (TF) and histone deacetylase individually play important roles in fruit ripening, the molecular connection between these two proteins within the regulatory system underlying banana fruit ripening is poorly understood. Here, we characterized a banana NAC MaNAC154 that was a negative regulator of banana fruit ripening. MaNAC154 was shown to localize in the nucleus, and it could target the promoters of MaEXP1/2, MaPL2, MaPG1/X3 and MaXTH5/23/28 to repress their transcription. Importantly, MaNAC154 was found to interact with a histone deacetylase MaHDA6, and their interaction significantly enhanced MaNAC154-mediated transcriptional repression capacity. Moreover, the acetylation levels of histones H3 and H4 of MaEXP1/2, MaPL2, MaPG1/X3 and MaXTH5/23/28 were elevated in the ripening stage. Overall, our data establish a coordinated mechanism underpinning histone deacetylation and TF-mediated gene repres-sion for banana fruit ripening, providing a novel molecular basis for controlling mechanism of fruit ripening and softening.
分类号:
- 相关文献
作者其他论文 更多>>
-
Tillage effect on soil N uptake and utilization by the changes of chiA and aprA gene under parallel nitrogen application
作者:Ran, Linling;Wang, Junqiang;Wu, Haoyang;Xue, Yunyin;Hu, Xinkun;Qiu, Xiaoqin;Yan, Shuang;Wang, Jinglong;Wei, Wei;Wang, Jinglong;Wei, Wei;Shi, Hao;Zheng, Shaikun
关键词:Tillage; chiA; aprA; Nitrogen; Nitrogen uptake efficiency (NUpE); Nitrogen utilization efficiency (NUtE)
-
Tillage effects on maize yield, N use efficiency and GHG emissions under parallel N application in Northwest China
作者:Wu, Hao-yang;Ran, Lin-ling;Wang, Jun-qiang;Yan, Shuang;Zhang, Yu;Shi, Hao;Zheng, Shai-kun;Xue, Yun-yin;Wang, Jun-qiang;Xia, Fei;Wei, Wei
关键词:Tillage practices; Maize yield; NUE; N balance and N surplus; GHG emission; Semi-arid agroecosystem
-
The CXCL8/MAPK/hnRNP-K axis enables susceptibility to infection by EV-D68, rhinovirus, and influenza virus in vitro
作者:Yang, Qingran;Yang, Qingran;Guo, Haoran;Li, Huili;Li, Zhaoxue;Ni, Fushun;Wei, Wei;Wen, Zhongmei;Liu, Kai;Kong, Huihui;Kong, Huihui;Wei, Wei
关键词:
-
Combined exposure to microplastics and copper elicited size-dependent uptake and toxicity responses in red swamp crayfish ( Procambarus clarkia)
作者:Zeng, Huixin;Zhong, Yanfei;Luo, Mingzhong;Wei, Wei;Xu, Xiaoli
关键词:Microplastics; Copper; Accumulation; Combined toxicity; Antioxidant enzyme
-
Ingenious integration of synthetic biology and droplet microfluidics
作者:Zhang, Panrui;Wu, Haoyu;Zhang, Runxin;Zhao, Danshan;Wei, Wei;Yang, Qiaoyi;Shi, Tianqiong;Wang, Yuetong;Zhang, Panrui;Wu, Haoyu;Zhang, Runxin;Zhao, Danshan;Wei, Wei;Yang, Qiaoyi;Shi, Tianqiong;Wang, Yuetong;Wang, Zhe;Wang, Zhe
关键词:Synthetic biology; Droplet microfluidics; High-throughput; Green biofabrication; Cell-free systems
-
Beyond Single-Pathogen Models: Understanding Mixed Infections Involving Phytoplasmas and Other Plant Pathogens
作者:Yu, Shao-Shuai;Wei, Wei
关键词:'one pathogen, one disease' concept; plant pathobiome paradigm; co-infection; unculturable plant pathogen; plant disease prevention
-
Advanced droplet microfluidic platform for high-throughput screening of industrial fungi
作者:Yang, Qiaoyi;Ye, Chao;Shi, Tianqiong;Wang, Yuetong;Yang, Qiaoyi;Lu, Siqi;Wu, Haoyu;Zhao, Danshan;Wei, Wei;Yi, Haoran;Li, Xi;Ye, Chao;Shi, Tianqiong;Wang, Yuetong;Ye, Chao;Wang, Zhe;Wang, Zhe
关键词:Droplet microfluidics; High-throughput screening; Industrial fungi; Filamentous fungi