A chromosome-scale genome provides new insights into the typical carotenoid biosynthesis in the important red yeast Rhodotorula glutinis QYH-2023 with anti-inflammatory effects
文献类型: 外文期刊
第一作者: He, Qiaoyun
作者: He, Qiaoyun;Chen, Chenxiao;Yang, Xiai;Li, Zhimin;Sun, Shitao;Qu, Xiaoxin;Yang, Xiushi;Pan, Jiangpeng;Hou, Chunsheng;Deng, Yanchun;He, Qiaoyun;Bai, Shasha;Bai, Shasha;Liu, Wei
作者机构:
关键词: Rhodotorula glutinis; Genome; Carotenoid biosynthesis
期刊名称:INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES ( 影响因子:8.2; 五年影响因子:7.8 )
ISSN: 0141-8130
年卷期: 2024 年 269 卷
页码:
收录情况: SCI
摘要: Rhodotorula spp. has been studied as one powerful source for a novel cell factory with fast growth and its high added-value biomolecules. However, its inadequate genome and genomic annotation have hindered its widespread use in cosmetics and food industries. Rhodotorula glutinis QYH-2023, was isolated from rice rhizosphere soil, and the highest quality of the genome of the strain was obtained at chromosome level (18 chromosomes) than ever before in red yeast in this study. Comparative genomics analysis revealed that there are more key gene copies of carotenoids biosynthesis in R. glutinis QYH-2023 than other species of Rhodotorula spp. Integrated transcriptome and metabolome analysis revealed that lipids and carotenoids biosynthesis was significantly enriched during fermentation. Subsequent investigation revealed that the over-expression of the strain three genes related to carotenoids biosynthesis in Komagataella phaffii significantly promoted the carotenoid production. Furthermore, in vitro tests initially confirmed that the longer the fermentation period, the synthesized metabolites controlled by R. glutinis QYH-2023 genome had the stronger anti-inflammatory properties. All of the findings revealed a high-quality reference genome which highlight the potential of R. glutinis strains to be employed as chassis cells for biosynthesizing carotenoids and other active chemicals.
分类号:
- 相关文献
作者其他论文 更多>>
-
Exploring the Link Between Mucin 2 and Weaning Stress-Related Diarrhoea in Piglets
作者:Wang, Li;Jin, Long;Zhang, Liulian;Li, Ziyu;Li, Zhimin;Li, Ke;Xu, Yuan;Di, Shengwei;Cui, Shiquan;Wang, Xibiao;Huang, Xuankai
关键词:weaning stress; diarrhoea; MUC2; piglets; intestinal injury
-
LACCASE35 enhances lignification and resistance against Pseudomonas syringae pv. actinidiae infection in kiwifruit
作者:Li, Yawei;Zhang, Dongle;Wang, Xiaojie;Wu, Shunyuan;Liu, Pu;Wang, Xiaojie;Zhou, Rongrong;Fang, Zemin;Bai, Fuxi;Li, Rui;Liu, Wei;Huang, Lili
关键词:
-
Multi-scale structural influence of starch on their interaction of caffeic acid and starch after freeze-thaw: Taking potato starch and lotus seed starch as examples
作者:Zhao, Renjie;Li, Chi;Liu, Qiannan;Liu, Wei;Zhang, Liang;Zhang, Zhenzhen;Zhao, Ruixuan;Hu, Honghai;Yao, Jia;Li, Chi
关键词:Caffeic acid; Starch; Interaction
-
Influence of the 'painless' TRP channel on temperature-dependent escape and humidity-related pupation in Bactrocera dorsalis larvae
作者:Zhang, Yan;Zhang, Panpan;Luo, Zhicai;Wang, Qi;Zhang, Jie;Yang, Minghuan;Yan, Shanchun;Liu, Wei;Wang, Guirong
关键词:Bactrocera dorsalis; Bdorpainless; CRISPR/Cas9; extreme environments; escape behavior
-
Multienzyme cascade for synthesis of hydroxytyrosol via engineered Escherichia coli
作者:Xiong, Tianzhen;Li, Xinmeng;Yue, Huidie;Liu, Junling;Bai, Dingyuan;Li, Wei;Fan, Guangyan;Xiong, Tianzhen;Li, Xinmeng;Yue, Huidie;Liu, Junling;Bai, Dingyuan;Li, Wei;Fan, Guangyan;Xiong, Tianzhen;Liu, Wei;Xiong, Tianzhen
关键词:Hydroxytyrosol;
Escherichia coli ; Cascade reaction; Whole cell biotransformation -
Divergent Flowering Time Responses to Increasing Temperatures Are Associated With Transcriptome Plasticity and Epigenetic Modification Differences at FLC Promoter Region of Arabidopsis thaliana
作者:Han, Yu;Liu, Li;Lei, Mengyu;Si, Huan;Ji, Yan;Du, Qiao;Zhang, Wenjia;Zan, Yanjun;Han, Yu;Liu, Wei;Du, Qiao;Liu, Jianquan;Han, Yu;Liu, Wei;Du, Qiao;Liu, Jianquan;Zhu, Mingjia;Liu, Jianquan;Dai, Yifei
关键词:ecological adaptation; flowering time; gene co-expression network; plasticity
-
A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay
作者:Yin, Huanran;Liu, Wei;Hu, Xin;Jia, Jingqi;Liu, Mengmeng;Wei, Jiaqi;Cheng, Yikeng;Gong, Xin;Li, Qiang;Yan, Wenhao;Chen, Wei;Jia, Jizeng;Gao, Lifeng;Fernie, Alisdair R.
关键词:wheat; phytohormones; metabolic regulatory network; DOF