The Effect of Heat Stress on Wheat Flag Leaves Revealed by Metabolome and Transcriptome Analyses During the Reproductive Stage

文献类型: 外文期刊

第一作者: Duan, Shuonan

作者: Duan, Shuonan;Meng, Xiangzhao;Zhang, Huaning;Wang, Xiaotong;Kang, Xu;Liu, Zihui;Ma, Zhenyu;Li, Guoliang;Guo, Xiulin

作者机构:

关键词: wheat; heat stress; flag leaf; amino acids; HSP; ABC transporter

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:4.9; 五年影响因子:5.7 )

ISSN: 1661-6596

年卷期: 2025 年 26 卷 4 期

页码:

收录情况: SCI

摘要: In this study, we were dedicated to investigating the effect caused by heat stress on wheat flag leaves. Metabolome and transcriptome analysis were introduced to identify some key biological processes. As a result, 182 and 214 metabolites were significantly changed at the anthesis and post-anthesis stages, respectively; most of them were lipids, amino acids and derivatives, phenolic acids, and alkaloids. Aminoacyl-tRNA biosynthesis was the most significantly enriched pathway by metabolites at both two stages, each of which included 13 types of amino acid, and 12 of them were shared and up-regulated. Therefore, we further measured 22 kinds of amino acid content in ten different wheat genotypes at the post-anthesis stage. Based on the average content of each amino acid, 17 kinds of them were significantly increased after heat stress, and 4 types were significantly decreased. Both the metabolism analysis and the transcriptome analysis had a higher number of significantly changed metabolites or differential expressed genes at the post-anthesis stage, which indicated that the post-anthesis stage is more sensitive to heat stress, with 21,361 and 17,130 differential expressed genes, respectively. Two pathways, protein processing in endoplasmic reticulum and ABC transporters, were significantly enriched at two stages. The differential expressed genes in processing in endoplasmic reticulum pathway mainly encoded various types of molecular chaperones; among them, the HSP20 family was the most predominant and intensively up-regulated. The ABC transporter gene family is another pathway that is deeply involved in heat-stress response, which could be classified into five subfamilies; among them, subfamilies B and G were the most active. In summary, this study revealed the heat response pattern of amino acids, HSPs, and ABC transporter which may play a vital role during the wheat reproductive stage.

分类号:

  • 相关文献
作者其他论文 更多>>