Key Contributions of the Overexpressed Plutella xylostella Sigma Glutathione S-Transferase 1 Gene (PxGSTs1) in the Resistance Evolution to Multiple Insecticides

文献类型: 外文期刊

第一作者: Liu, Jiyuan

作者: Liu, Jiyuan;Tian, Zhen;Li, Ruichi;Ni, Shujun;Sun, Hong;Zhang, Yalin;Li, Yifan;Yin, Fei;Li, Zhenyu

作者机构:

关键词: adaptive evolution; insecticide resistance; glutathione S-transferase; Plutella xylostella; microRNA

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:6.1; 五年影响因子:6.3 )

ISSN: 0021-8561

年卷期: 2024 年 72 卷 5 期

页码:

收录情况: SCI

摘要: The overexpression of insect detoxification enzymes is a typical adaptive evolutionary strategy for insects to cope with insecticide pressure. In this study, we identified a glutathione S-transferase (GST) gene, PxGSTs1, that exhibited pronounced expression in the field-resistant population of Plutella xylostella. By using RNAi (RNA interference), the transgenic fly models, and quantitative real-time polymerase chain reaction (RT-qPCR) methods, we confirmed that the augmented expression of PxGSTs1 mediates the resistance of P. xylostella to various types of insecticides, including chlorantraniliprole, novaluron, lambda-cyhalothrin, and abamectin. PxGSTs1 was found to bolster insecticide resistance in two ways: direct detoxification and enhancing antioxidative defenses. In addition, our findings demonstrated that pxy-miR-8528a exerts a pivotal influence on forming insecticide resistance in P. xylostella by downregulating PxGSTs1 expression. In summary, we elucidated the multifaceted molecular and biochemical underpinnings of PxGSTs1-driven insecticide resistance in P. xylostella. Our results provide a new perspective for understanding the insecticide resistance mechanism of P. xylostella.

分类号:

  • 相关文献
作者其他论文 更多>>