The PAP Gene Family in Cotton: Impact of Genome-Wide Identification on Fiber Secondary Wall Synthesis

文献类型: 外文期刊

第一作者: Sun, Cong

作者: Sun, Cong;Li, Weijie;Qi, Ruiqiang;Liu, Yangming;Wang, Xiaoyu;Gong, Juwu;Gong, Wankui;Pan, Jingtao;Li, Yang;Shi, Yuzhen;Yan, Haoliang;Shang, Haihong;Yuan, Youlu;Wang, Xiaoyu;Shang, Haihong

作者机构:

关键词: cotton; purple acid phosphatase (PAP); cotton fiber; expression analysis

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:4.9; 五年影响因子:5.7 )

ISSN: 1661-6596

年卷期: 2025 年 26 卷 9 期

页码:

收录情况: SCI

摘要: Cotton is a crucial cash crop widely valued for its fiber. It is an important source of natural fiber and has diverse applications. Improving fiber quality is of significant economic and agricultural importance. Purple acid phosphatases (PAPs) are multifunctional enzymes critical for plant cell wall biosynthesis, root architecture modulation, low-phosphorus stress adaptation, and salt/ROS stress tolerance. In this study, a comprehensive genome-wide analysis of the PAP gene family was performed for four cotton species (G. hirsutum, G. barbadense, G. raimondii, and G. arboreum) to explore its potential role in improving fiber quality. A total of 193 PAP genes were identified in these species, revealing several conserved domains that contribute to their functional diversity. Phylogenetic analysis showed that the cotton PAP2 genes exhibited high homology with NtPAP12, a cell wall synthesis-related gene. Using cotton varieties with contrasting fiber thickness (EZ60, micronaire 4.5 vs. CCRI127, micronaire 3.5), qRT-PCR analysis demonstrated significantly higher expression levels of GhPAP2.2, GhPAP2.6, GhPAP2.8, and GhPAP2.9 in EZ60 fibers during 20-25 DPA compared to CCRI127. These results highlight the potential influence of PAP genes on cotton fiber development and provide valuable insights for improving fiber quality in cotton breeding.

分类号:

  • 相关文献
作者其他论文 更多>>