Evaluating the impact of biochar amendment on antibiotic resistance genes and microbiome dynamics in soil, rhizosphere, and endosphere at field scale

文献类型: 外文期刊

第一作者: Zhou, Zhenchao

作者: Zhou, Zhenchao;Abid, Abbas Ali;Xu, Jianming;Chen, Hong;Cui, Erping;Zhu, Lin

作者机构:

关键词: Antibiotic resistance genes; Biochar; Bacterial communities; Soil; Rhizosphere

期刊名称:JOURNAL OF HAZARDOUS MATERIALS ( 影响因子:12.2; 五年影响因子:11.9 )

ISSN: 0304-3894

年卷期: 2024 年 477 卷

页码:

收录情况: SCI

摘要: Biochar amendment is a promising strategy for mitigating antibiotic resistance genes (ARGs) in soil and plants, but its effects on ARGs at field scale are not fully understood. Here, field trials were executed utilizing two plant varieties, Brassica juncea and Lolium multiflorum, with four types of biochar to investigate changes in ARGs and microbiome in soil, rhizosphere, root endophytes, and leaf endophytes. Results showed that biochar altered ARG distribution in soil and plant, and restrained their transmission from soil and rhizosphere to endophytes. A reduction of 1.2-2.2 orders of magnitude in the quantity of ARGs was observed in root and leaf endophytes following biochar addition, while no significant changes were observed in soil and rhizosphere samples. Procrustes and network analyses revealed significant correlations between microbial communities and mobile genetic elements with ARGs (P < 0.05). Besides, redundancy and variation partitioning analysis indicated that bacterial communities may play a dominant role in shaping the ARGs profile, contributing to 43 % of the variation observed in ARGs. These field results suggest that biochar amendment alone may not fully alleviate ARGs in soil, but it has a significant beneficial impact on food safety and human health by effectively reducing ARGs in plant endophytes.

分类号:

  • 相关文献
作者其他论文 更多>>