A new strategy for weed detection in maize fields
文献类型: 外文期刊
第一作者: Chen, Pengfei
作者: Chen, Pengfei;Xia, Tianshun;Chen, Pengfei;Xia, Tianshun;Yang, Guijun
作者机构:
关键词: Weed detection; Unmanned aerial vehicle; Maize; Deep learning; Modified YOLO v5 model
期刊名称:EUROPEAN JOURNAL OF AGRONOMY ( 影响因子:4.5; 五年影响因子:5.0 )
ISSN: 1161-0301
年卷期: 2024 年 159 卷
页码:
收录情况: SCI
摘要: Timely determination of weed distributions in fields is crucial for the precise spraying of herbicides. This facilitates weed control while saving costs and protecting the environment. Existing weed detection strategies often rely on the utilization of numerous weed samples to train detection models directly, which presents challenges in situations involving limited weed samples. To address this issue, a novel weed detection strategy was proposed in this study to identify weeds accurately in fields with varying coverage levels. For this purpose, red-green-blue (RGB) images of maize fields with different weed coverage levels were captured via a vertical take-off and landing fixed-wing unmanned aerial vehicle (UAV). The UAV images were first mosaicked, and a new weed detection strategy was developed and assessed. In this process, the MeanShift segmentation method, coupled with the local variance (LV) segmentation evaluation function and the Otsu automatic classification method, was initially employed to extract vegetation areas. The you-only-look-once (YOLO) v5n model was subsequently improved and used to detect maize plants. Finally, weed mapping was achieved by removing the identified maize plants from the vegetation through overlay analysis. The evaluation of the proposed method via an external dataset yielded favorable weed detection results, with an R2 value of 0.96 and a root mean square error (RMSE) value of 3.08 % under the different weed coverage levels. Specifically, in addition to adjusting the activation function and the nonmaximum suppression method, the impacts of integrating various attention modules at different positions on the performance of the YOLO v5n model for maize plant detection were analyzed. Improving the YOLO v5n model by incorporating the efficient channel attention (ECA) module into the backbone of the original model and utilizing the Hardswish activation function is recommended. Overall, this study offers support for precise weed control.
分类号:
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model
-
Retrieving the chlorophyll content of individual apple trees by reducing canopy shadow impact via a 3D radiative transfer model and UAV multispectral imagery
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Zhang, Wenjie;Zhang, Chengjian;Chen, Riqiang;Zhang, Wenjie;Zhao, Dan;Yang, Guijun;Xu, Bo;Feng, Haikuan;Yang, Hao
关键词:Chlorophyll content; Shadows; Vegetation index (VI); Radiative transfer models (RTMs); Hybrid inversion model; Individual apple tree crown