Mapping cropland rice residue cover using a radiative transfer model and deep learning
文献类型: 外文期刊
第一作者: Yue, Jibo
作者: Yue, Jibo;Fu, Yuanyuan;Yue, Jibo;Tian, Qingjiu;Tian, Jia;Liu, Yang;Fu, Yuanyuan;Zhou, Chengquan;Feng, Haikuan;Yang, Guijun;Liu, Yang;Tian, Jia
作者机构:
关键词: Convolutional neural network; RRC; RTM; Machine learning
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 215 卷
页码:
收录情况: SCI
摘要: Accurate determination of rice residue cover (RRC) can improve the monitoring of tillage information. Currently, the accurate determination of RRC using optical remote sensing is hindered by variations in cropland moisture and cover of following crops. The fractional cover (FC) of the soil (fS), crop (fC), and crop residue (fCR) changes (fS + fC + fCR = 1) after the following crop is planted, which increases the difficulty of remote-sensing RRC estimation. Cropland soil moisture and crop residue moisture affect the values of cropland and crop residue spectral indices (CRSIs), thereby reducing the accuracy of remote-sensing RRC estimation. Deep learning techniques (e.g., convolutional neural networks [CNN] and transfer learning [TL]) have been proven to extract the deep features of input images with distortion invariance, such as displacement and scaling, which are similar to moisture and the following crop effects on remote-sensing CRSIs. This study aimed to evaluate the combined use of deep features of cropland spectra extracted by deep learning techniques to estimate the cropland RRC under the effects of variations in cropland moisture and cover of the following crops. This study proposes an RRCNet CNN that fuses deep and shallow features to improve RRC estimation. A PROSAIL radiative transfer model was employed to simulate a cropland "soil-crop-crop residue" mixed spectra dataset (n = 103,068), considering the variations in cropland moisture and the cover of the following crop. The RRCNet was first pre-trained using the simulated dataset, and then the knowledge from the pre-trained RRCNet was updated based on field experimental FCs, RRCs, and Sentinel-2 image spectra using the TL technique. Our study indicates that RRCNet can incorporate shallow and deep spectral features of cropland "soil-crop-crop residue" mixed spectra, providing high-performance FCs and RRC estimation. The FCs and RRC estimates from RRCNet + TL (FCs: R2 = 0.939, root mean squared error (RMSE) = 0.071; RRC: R2 = 0.891, RMSE = 0.083) were more accurate than those from CRSI + multiple linear regression, CRSI + random forest, and CRSI + support vector machine (FCs: R2 = 0.877-907, RMSE = 0.086-0.101; RRC: R2 = 0.378-0.714, RMSE = 0.133-0.229). We mapped the multistage RRC based on Sentinel-2 multispectral instrument (MSI) images and RRCNet. Tillage information can be inferred from RRC and RRC difference maps changes.
分类号:
- 相关文献
作者其他论文 更多>>
-
An automated lightweight approach for detecting dead fish in a recirculating aquaculture system
作者:Zhou, Chengquan;Wang, Chenye;Sun, Dawei;Hu, Jun;Ye, Hongbao;Wang, Chenye
关键词:YOLO; Dead fish; RAS; Image processing; Lightweight framework
-
End-to-end stereo matching network with two-stage partition filtering for full-resolution depth estimation and precise localization of kiwifruit for robotic harvesting
作者:Jing, Xudong;Jiang, Hanhui;Niu, Shiao;Zhang, Haosen;Murengami, Bryan Gilbert;Wu, Zhenchao;Li, Rui;Fu, Longsheng;Zhou, Chengquan;Ye, Hongbao;Chen, Jinyong;Fu, Longsheng;Fu, Longsheng;Fu, Longsheng;Majeed, Yaqoob
关键词:Two-stage partition filtering; Kiwifruit localization; LaC-Gwc Net; YOLOv8; Robotic harvesting
-
Physiological Adaptation of Fenneropenaeus chinensis in Response to Saline-Alkaline Stress Revealed by a Combined Proteomics and Metabolomics Method
作者:Gao, Tian;Sun, Huarui;Liu, Yang;Gao, Tian;Wang, Qiong;Sun, Huarui;Li, Jitao;He, Yuying;Wang, Qiong;Li, Jitao;He, Yuying
关键词:Fenneropenaeus chinensis; proteomics; metabolomics; carbonate alkalinity stress; high pH stress
-
Comparative Transcriptome Analysis of the Hypothalamic-Pituitary-Gonadal Axis of Jinhu Grouper (Epinephelus fuscoguttatus ♀ x Epinephelus tukula ♂) and Tiger Grouper (Epinephelus fuscoguttatus)
作者:Qiu, Yishu;Duan, Pengfei;Ding, Xiaoyu;Li, Zhentong;Wang, Xinyi;Li, Linlin;Liu, Yang;Wang, Linna;Tian, Yongsheng;Li, Zhentong;Li, Linlin;Liu, Yang;Wang, Linna;Tian, Yongsheng;Li, Zhentong;Li, Linlin;Liu, Yang;Wang, Linna;Tian, Yongsheng
关键词:Jinhu grouper (Epinephelus fuscoguttatus female x Epinephelus tukula male); Epinephelus fuscoguttatus; gonadal development; transcriptome
-
A self-adaptive parallel image stitching algorithm for unmanned aerial vehicles in edge computing environments
作者:Xu, Xin;Zhang, Li;Yue, Jibo;Zhong, Heming;Wang, Ying;Qiao, Hongbo;Liu, Jie;Lu, Yanhui
关键词:UAV remote sensing; panoramic stitching; multi-core CPU; multi process; edge computing
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance