FCFormer: fish density estimation and counting in recirculating aquaculture system
文献类型: 外文期刊
第一作者: Zhu, Kaijie
作者: Zhu, Kaijie;Ma, Pingchuan;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen
作者机构:
关键词: recirculating aquaculture systems; density estimation; fish counting; transformer; deep learning
期刊名称:FRONTIERS IN MARINE SCIENCE ( 影响因子:3.7; 五年影响因子:4.7 )
ISSN:
年卷期: 2024 年 11 卷
页码:
收录情况: SCI
摘要: In intelligent feeding recirculating aquaculture system, accurately estimating fish population and density is pivotal for management practices and survival rate assessments. However, challenges arise due to mutual occlusion among fish, rapid movement, and complex breeding environments. Traditional object detection methods based on convolutional neural networks (CNN) often fall short in fully addressing the detection demands for fish schools, especially for distant and small targets. In this regard, we introduce a detection framework dubbed FCFormer (Fish Count Transformer). Specifically, the Twins-SVT backbone network is employed first to extract global features of fish schools. To further enhance feature extraction, especially in the fusion of features at different levels, a Bi-FPN aggregation network model with a CAM Count module is incorporated (BiCC). The CAM module aids in focusing more on critical region features, thus rendering feature fusion more cohesive and effective. Furthermore, to precisely predict density maps and elevate the accuracy of fish counting, we devised an adaptive feature fusion regression head: CRMHead. This approach not only optimizes the feature fusion process but also ensures superior counting precision. Experimental results shown that the proposed FCFormer network achieves an accuracy of 97.06%, with a mean absolute error (MAE) of 6.37 and a root mean square error (MSE) of 8.69. Compared to the Twins transformer, there's a 2.02% improvement, outperforming other transformer-based architectures like CCTrans and DM_Count. The presented FCFormer algorithm can be effectively applied to fish density detection in intelligent feeding recirculating aquaculture system, offering valuable input for the development of intelligent breeding management systems.
分类号:
- 相关文献
作者其他论文 更多>>
-
2D/0D Heterojunction Fluorescent Probe with Schottky Barrier Based on Ti3C2TX MXene Loaded Graphene Quantum Dots for Detection of H2S During Food Spoilage
作者:Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Yang, Xinting;Shi, Ce;Sun, Xia;Guo, Yemin;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Jia, Zhixin;Ji, Zengtao;Yang, Xinting;Shi, Ce;Zhang, Jingbin;Zhang, Jingbin;Zhang, Jiaran
关键词:fluorescent probe; graphene quantum dots; H2S contamination; heterojunction; Ti3C2Tx MXene
-
DF-DETR: Dead fish-detection transformer in recirculating aquaculture system
作者:Fu, Tingting;Feng, Dejun;Li, Shantan;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Yang, Xinting;Li, Shantan;Zhou, Chao
关键词:DF-DETR; Dead fish detection; Feature fusion; Recirculating aquaculture system
-
PpHSP20-26, a small heat shock protein, confers enhanced autotoxicity stress tolerance in peach
作者:Shen, Wanqi;Zeng, Chunfa;Sun, Jingxian;Meng, Jian;Zhu, Kaijie;Liu, Junwei;Li, Guohuai;Shen, Wanqi;Yuan, Ping;Bu, Fanwen
关键词:Plant autotoxicity; Benzoic acid; Prunus persica; Replant problem; Stress response
-
An industrial carbon block instance segmentation algorithm based on improved YOLOv8
作者:Shi, Runjie;Li, Zhengbao;Wu, Zewei;Zhang, Wenxin;Xu, Yihang;Luo, Gan;Ma, Pingchuan;Zhang, Zheng
关键词:Industrial automation; Machine vision; Carbon block instance segmentation; YOLO; Reinforce feature fusion
-
DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring
作者:Chen, Xiao;Hu, Huan;Li, Tianjun;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Chen, Xiao;Yang, Xinting;Hu, Huan;Li, Tianjun;Zhou, Zijie;Li, Wenyong;Zhou, Zijie
关键词:Pest detection; YOLOv8; Fusion features; Small objects; Multiple scale detection
-
Semi-supervised fish school density estimation and counting network in recirculating aquaculture systems based on adaptive density proxy
作者:Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhou, Chao;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhou, Chao;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhou, Chao;Zhu, Kaijie;Ma, Pingchuan
关键词:Fish school density estimation; Aquaculture; Machine vision; Adaptive density proxy
-
High temporal-resolution transcriptome landscape reveals the biological process and regulatory genes of melanin deposition in breast muscle of Silkie chickens during embryonic development
作者:Yang, Xinting;Ma, Bowen;Zhao, Qingyu;Jia, Yaxiong;Meng, Qingshi;Qin, Yuchang;Tang, Chaohua;Zhang, Junmin
关键词:Silkie chicken; Breast muscle; Melanin deposition; Embryonic development; Transcription regulation