A Gene Encoding Xylanase Inhibitor Is a Candidate Gene for Bruchid (Callosobruchus spp.) Resistance in Zombi Pea (Vigna vexillata (L.) A. Rich)
文献类型: 外文期刊
第一作者: Amkul, Kitiya
作者: Amkul, Kitiya;Laosatit, Kularb;Somta, Prakit;Lin, Yun;Yuan, Xingxing;Chen, Xin
作者机构:
关键词: zombi pea; Vigna vexillata; bruchid; seed weevil; Callosobruchus; xylanase inhibitor
期刊名称:PLANTS-BASEL ( 影响因子:4.5; 五年影响因子:4.8 )
ISSN:
年卷期: 2023 年 12 卷 20 期
页码:
收录情况: SCI
摘要: Two bruchid species, Callosobruchus maculatus and Callosobruchus chinensis, are the most significant stored insect pests of tropical legume crops. Previously, we identified a major QTL, qBr6.1, controlling seed resistance to these bruchids in the cultivated zombi pea (Vigna vexillata) accession 'TVNu 240'. In this study, we have narrowed down the qBr6.1 region and identified a candidate gene conferring this resistance. Fine mapping using F2 and F2: 3 populations derived from a cross between TVNu 240 and TVNu 1623 (susceptible) revealed the existence of two tightly linked QTLs, designated qBr6.1-A and qBr6.1-B, within the qBr6.1. The QTLs qBr6.1-A and qBr6.1-B explained 37.46% and 10.63% of bruchid resistance variation, respectively. qBr6.1-A was mapped to a 28.24 kb region containing four genes, from which the gene VvTaXI encoding a xylanase inhibitor was selected as a candidate gene responsible for the resistance associated with the qBr6.1-A. Sequencing and sequence alignment of VvTaXI from TVNu 240 and TVNu 1623 revealed a 1-base-pair insertion/deletion and five single-nucleotide polymorphisms (SNPs) in the 50 UTR and 11 SNPs in the exon. Alignment of the VvTAXI protein sequences showed five amino acid changes between the TVNu 240 and TVNu 1623 sequences. Altogether, these results demonstrated that the VvTaXI encoding xylanase inhibitor is the candidate gene conferring bruchid resistance in the zombi pea accession TVNu 240. The gene VvTaXI will be useful for the molecular breeding of bruchid resistance in the zombi pea.
分类号:
- 相关文献
作者其他论文 更多>>
-
Construction of a high-density genetic map for yardlong bean and identification of ANT1 as a regulator of anthocyanin biosynthesis
作者:Zhang, Hongmei;Zhang, Wei;Liu, Xiaoqing;Chen, Xin;Chen, Huatao;Meng, Shan;Yan, Wei;Hui, Linchong;Chen, Wei
关键词:
-
Occurrence, distribution, and genetic diversity of faba bean viruses in China
作者:Li, Zongdi;Qin, Jiachao;Zhu, Yuxiang;Zhou, Mimi;Chen, Xin;Cui, Xiaoyan;Li, Zongdi;Zhao, Na;Zhou, Enqiang;Wang, Xuejun
关键词:faba bean; viruses; small RNA sequencing; incidence; distribution; genetic diversity; China
-
Neurotoxicity of Combined Exposure to the Heavy Metals (Pb and As) in Zebrafish (Danio rerio)
作者:Liu, Ming;Li, Guangyu;Liu, Haoling;Zuo, Junli;Zheng, Wenting;Luan, Ning;Deng, Ping;Cui, Wenwen;Zhang, Huixian;Chen, Xin;Yao, Jingjing;Peng, Xitian;Peng, Lijun;Liu, Jiao;Yan, Wei
关键词:zebrafish; heavy metals; co-exposure; neurotoxicity; neurotransmitter; HPI axis
-
Two genes encoding caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) are candidate genes for physical seed dormancy in cowpea (Vigna unguiculata (L.) Walp.)
作者:Laosatit, Kularb;Amkul, Kitiya;Somta, Prakit;Lin, Yun;Yuan, Xingxing;Chen, Xin
关键词:
-
Genome-Wide Association Study and Identification of Candidate Genes Associated with Seed Number per Pod in Soybean
作者:Wang, Qiong;Zhang, Wei;Xu, Wenjing;Zhang, Hongmei;Liu, Xiaoqing;Chen, Xin;Chen, Huatao;Chen, Huatao
关键词:soybean; seed number per pod; leaf characteristics; genome-wide association study; single nucleotide polymorphism
-
Comparative transcriptome analysis between two different cadmium-accumulating genotypes of soybean (Glycine max) in response to cadmium stress
作者:Liu, Xiaoqing;Zhang, Hongmei;Zhang, Wei;Jia, Qianru;Chen, Xin;Chen, Huatao
关键词:Cadmium; Differentially expressed genes; Soybean; Transcriptome
-
TMT-based quantitative proteomic analysis of serum from domestic sheep in early pregnancy
作者:Ren, Yujun;Wang, Zhunxuan;Huang, Tao;Yang, Min;Ren, Yujun;Wang, Zhunxuan;Sun, Yishan;Gong, Hongbin;Xie, Su;Gao, Ruonan;Chen, Xin;Li, Qingchun;Lu, Shihao;Huang, Tao;Yang, Min
关键词:early pregnancy; embryo implantation; PSMB4; reproductive; serum; sheep; tandem mass-tag labelling