Influence of the application of three different elicitors on soybean plants on the concentrations of several isoflavones in soybean seeds

文献类型: 外文期刊

第一作者: Zhang, Bo

作者: Zhang, Bo;Hettiarachchy, Navam;Chen, Pengyin;Horax, Ronny;Cornelious, Brian;Zhu, Danhua

作者机构:

关键词: isoflavones;soybean;solvent;elicitor;HPLC;GLYCINE-MAX;FOLIAR APPLICATION;SOY FOODS;EXTRACTION;BIOSYNTHESIS

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Soybean [Glycine max (L.) Merr.] is a rich source of isoflavones that are often affected by biotic and abiotic factors. The objectives of this study were to evaluate the effect of various concentrations of three natural elicitors applied at different soybean growth stages on isoflavone content and to compare the efficiency of several solvent systems in isoflavone extraction and quantification. The isoflavones extracted from R96-3444 soybean using eight solvent systems were separated, identified, and quantified by a high-performance liquid chromatography (HPLC) procedure. The soybean plants were sprayed with salicylic acid, methyl salicylate, or ethyl acetate at 0, 10(-6), 10(-3), and 10(-1) M at R1 (blooming) or R4 (full pods) growth stage. Results showed that 10(-3) M ethyl acetate sprayed at the R1 stage significantly increased total isoflavone content and the levels of some individual isoflavones in soybean seeds. With all the elicitors that were tested, concentration was a more important factor than application time with respect to isoflavone content with lower concentrations being more effective on most isoflavones. A 53% acetonitrile solvent system was the best solvent system for extracting total isoflavone, malonyl glucosides, genistein, glycitin, genistin, acetyl-daidzin, and acetyl-genistin. The results of this study will be useful for increasing the isoflavone content in desirable soybean varieties and improving isoflavone concentration during extraction.

分类号: S13

  • 相关文献

[1]Purification and characterization of beta-glucosidase from newly isolated Aspergillus sp MT-0204. Qi, Bin,Liu, Xianjin,Qi, Bin,Wang, Limei. 2009

[2]Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant-Agrobacterium tumefaciens interaction. Zhang, Yan-Min,Zhang, Hong-Mei,Liu, Zi-Hui,Guo, Xiu-Lin,Li, Hui-Cong,Li, Guo-Liang,Jiang, Chun-Zhi,Zhang, Meng-Chen.

[3]SOIL PLUS FOLIAR NITROGEN APPLICATION INCREASES COTTON GROWTH AND SALINITY TOLERANCE. Luo, Zhen,Kong, Xiangqiang,Dai, Jianlong,Dong, Hezhong.

[4]The response of ginseng grown on farmland to foliar-applied iron, zinc, manganese and copper. Zhang, Hao,Yang, He,Gao, Yugang,Zhang, Lianxue,Zhang, Hao,Wang, Yingping. 2013

[5]Water stress induces in pear leaves the rise of betaine level that is associated with drought tolerance in pear. Gao, XP,Yan, JY,Liu, EK,Shen, YY,Lu, YF,Zhang, DP.

[6]Light effect on the tissue contents and distribution of isoflavones in the developing seedling of soybean. Sun, JM,Ding, AL. 1998

[7]Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions. Xia Xiudong,Wang Ying,Liu Xiaoli,Li Ying,Zhou Jianzhong. 2016

[8]Protective Effects of Genistein and Puerarin against Chronic Alcohol-Induced Liver Injury in Mice via Antioxidant, Anti-inflammatory, and Anti-apoptotic Mechanisms. Zhao, Liang,Wang, Yong,Guo, Xiaoxuan,Ji, Baoping,Zhou, Feng,Liu, Jia,Wang, Kai,Wu, Wei.

[9]Isoflavone Content and Composition in Chickpea (Cicer arietinum L.) Sprouts Germinated under Different Conditions. Gao, Yue,Yao, Yang,Ren, Guixing,Zhu, Yingying.

[10]Isoflavones in Chickpeas Inhibit Adipocyte Differentiation and Prevent Insulin Resistance in 3T3-L1 Cells. Yao, Yang,Ren, Guixing,Gao, Yue,Zhu, Yinging.

[11]Simultaneous determination of isoflavones and resveratrols for adulteration detection of soybean and peanut oils by mixed-mode SPE LC-MS/MS. Zhao, Xin,Ma, Fei,Li, Peiwu,Li, Guangming,Zhang, Liangxiao,Zhang, Qi,Zhang, Wen,Wang, Xiupin,Zhao, Xin,Li, Peiwu,Li, Guangming,Zhang, Liangxiao,Zhang, Qi,Zhang, Wen,Wang, Xiupin,Zhao, Xin,Ma, Fei,Li, Peiwu,Li, Guangming,Zhang, Liangxiao,Zhang, Qi,Zhao, Xin,Ma, Fei,Li, Peiwu,Li, Guangming,Zhang, Qi,Ma, Fei,Li, Peiwu,Zhang, Liangxiao,Zhang, Wen,Wang, Xiupin.

[12]Effects of Two Low Phytic Acid Mutations on Seed Quality and Nutritional Traits in Soybean (Glycine max L. Merr). Yuan, Feng-Jie,Shu, Qing-Yao,Yuan, Feng-Jie,Zhu, Dan-Hua,Fu, Xu-Tun,Dong, De-Kun,Zhu, Shen-Long,Li, Bai-Quan,Deng, Bo,Shu, Qing-Yao.

[13]Inhibitory effect of esterified lactoferin and lactoferin against tobacco mosaic virus (TMV) in tobacco seedlings. Wang, Jie,Xia, Xiao-Ming,Li, Peng-peng,Wang, Kai-Yun,Wang, Hong-Yan. 2013

[14]Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Qiu, Dewen,Mao, Jianjun,Yang, Xiufen,Zeng, Hongmei. 2009

[15]Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco. Liu, Zhipeng,Liu, Wenxian,Zeng, Hongmei,Yang, Xiufen,Guo, Lihua,Qiu, Dewen. 2014

[16]Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth. Wang, Zhenzhen,Yang, Xiufen,Guo, Lihua,Qiu, Dewen,Zeng, Hongmei. 2016

[17]Comparison of cerato-platanin family protein BcSpl1 produced in Pichia pastoris and Escherichia coli. Liang, Yingbo,Qiu, Dewen,Yuan, Jingjing,Yang, Xiufen. 2017

[18]Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Zhou, Mei-Liang,Shao, Ji-Rong,Zhou, Mei-Liang,Tang, Yi-Xiong.

[19]Production and metabolic engineering of bioactive substances in plant hairy root culture. Zhou, Mei-Liang,Shao, Ji-Rong,Zhou, Mei-Liang,Tang, Yi-Xiong,Wu, Yan-Min,Zhou, Mei-Liang,Zhu, Xue-Mei.

[20]Induction of phytochemical glyceollins accumulation in soybean following treatment with biotic elicitor (Aspergillus oryzae). Eromosele, Ojokoh,Bo, Shi,Ping, Liang. 2013

作者其他论文 更多>>