Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles
文献类型: 外文期刊
第一作者: Wang, Zuo-Ping
作者: Wang, Zuo-Ping;Zhang, Zhong-Bao;Zheng, Deng-Yu;Zhang, Tong-Tong;Li, Xiang-Long;Zhang, Chun;Wei, Jian-Hua;Wu, Zhong-Yi;Zhang, Tong-Tong;Yu, Rong
作者机构:
关键词: exogenous genes; genotype independence; magnetic nanoparticles; maize inbred lines; pollen transfection; pollen aperture
期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:9.106; 五年影响因子:8.241 )
ISSN: 1672-9072
年卷期: 2022 年 64 卷 6 期
页码:
收录情况: SCI
摘要: Current gene delivery methods for maize are limited to specific genotypes and depend on time-consuming and labor-intensive tissue culture techniques. Here, we report a new method to transfect maize that is culture-free and genotype independent. To enhance efficiency of DNA entry and maintain high pollen viability of 32%-55%, transfection was performed at cool temperature using pollen pretreated to open the germination aperture (40%-55%). Magnetic nanoparticles (MNPs) coated with DNA encoding either red fluorescent protein (RFP), beta-glucuronidase gene (GUS), enhanced green fluorescent protein (EGFP) or bialaphos resistance (bar) was delivered into pollen grains, and female florets of maize inbred lines were pollinated. Red fluorescence was detected in 22% transfected pollen grains, and GUS stained 55% embryos at 18 d after pollination. Green fluorescence was detected in both silk filaments and immature kernels. The T1 generation of six inbred lines showed considerable EGFP or GUS transcripts (29%-74%) quantitated by polymerase chain reaction, and 5%-16% of the T1 seedlings showed immunologically active EGFP or GUS protein. Moreover, 1.41% of the bar transfected T1 plants were glufosinate resistant, and heritable bar gene was integrated into the maize genome effectively as verified by DNA hybridization. These results demonstrate that exogenous DNA could be delivered efficiently into elite maize inbred lines recalcitrant to tissue culture-mediated transformation and expressed normally through our genotype-independent pollen transfection system.
分类号:
- 相关文献
作者其他论文 更多>>
-
Effect of Powdery Mildew on the Photosynthetic Parameters and Leaf Microstructure of Melon
作者:Tian, Mei;Yu, Rong;Yang, Wanbang;Guo, Song;Liu, Shengfeng;Du, Huiying;Liang, Jinjin;Zhang, Xingxu
关键词:disease index; chlorophyll; stomata; yield; meat thickness
-
Layered Double Hydroxides Reduce the Availability of Cadmium and Lead in Soil and the Content of Cadmium and Lead in Grain
作者:Yu, Peng;Li, Shun;Zhang, Chun;Huang, Wei;Qin, Yilin;Wang, Zhiguo;Liao, Yulin;Li, Jianglin;Wang, Zhiguo
关键词:Layered double hydroxides; synergistic remediation; cadmium(cd) and lead(pb); soil remediation; practical application
-
Quantitative Trait Loci Mapping and Comparative Transcriptome Analysis of Fruit Weight (FW) in Watermelon (Citrullus lanatus L.)
作者:Guo, Song;Shen, Huolin;Tian, Mei;Du, Huiying;Liu, Shengfeng;Yu, Rong
关键词:watermelon; fruit weight; genetic map; QTL mapping; bulked segregant analysis (BSA); RNA-seq; differential expression analysis
-
Effects of Watermelon Cropping Management on Soil Bacteria and Fungi Biodiversity
作者:Tian, Mei;Liu, Shengfeng;Yu, Rong;Liang, Jinjin;Zhang, Xingxu
关键词:agricultural; crop management; diversity; microbial community; watermelon
-
Subtelomeric 5-enolpyruvylshikimate-3-phosphate synthase copy number variation confers glyphosate resistance in Eleusine indica
作者:Zhang, Chun;Tian, Xingshan;Johnson, Nicholas A.;Hall, Nathan;Patterson, Eric L.;Yu, Qin
关键词:
-
Temperature influences glyphosate efficacy on glyphosate-resistant and -susceptible goosegrass (Eleusine indica)
作者:Guo, Wenlei;Zhang, Chun;Wang, Siwei;Zhang, Taijie;Tian, Xingshan;Guo, Wenlei;Zhang, Chun;Wang, Siwei;Zhang, Taijie;Tian, Xingshan
关键词:low temperature; glyphosate; control efficacy; shikimate; absorption; translocation
-
Metabolic pathways modulated by coumarin to inhibit seed germination and early seedling growth in Eleusine indica
作者:Zhang, Tai-Jie;Ma, Zhao;Tian, Xing-Shan;Guo, Wen-Lei;Zhang, Chun;Ma, Zhao;Ma, Hong-Ju
关键词:Amino acids; Coumarin; Eleusine indica; Germination; Metabolites