Integrated analyses of the transcriptome and metabolome of the leaves of albino tea cultivars reveal coordinated regulation of the carbon and nitrogen metabolism
文献类型: 外文期刊
第一作者: Zhang, Qunfeng
作者: Zhang, Qunfeng;Tang, Dandan;Liu, Meiya;Ruan, Jianyun;Zhang, Qunfeng;Tang, Dandan;Liu, Meiya;Ruan, Jianyun
作者机构:
关键词: Carbon deficiency stress; carbon???nitrogen metabolism; coordinated regulation; metabolomics; transcriptomics
期刊名称:SCIENTIA HORTICULTURAE ( 影响因子:3.463; 五年影响因子:3.672 )
ISSN: 0304-4238
年卷期: 2018 年 231 卷
页码:
收录情况: SCI
摘要: Previous studies have revealed that dramatic changes in metabolism occur in albino tea leaves compared with regular green tea leaves. In particular, the flavonoid content decreased while the amino acid content increased notably, indicating that both the carbon and nitrogen metabolism had undergone significant changes. To understand the coordinated regulation of carbon and nitrogen metabolism in albino tea leaves, we performed integrated analyses of the metabolome and transcriptome for both the albino (baiye 1) tea plant and the regular (Longing 43 as control) tea plant. Based on the multivariate statistics of principal component analysis and OPLS-DA (orthogonal partial least squares-discriminant analysis), leaves from the baiye 1 and Longing 43 tea plants were classified into three developmental stages. By identifying the main biomarkers from the different groups and from pathway analysis, we gained new insight into understanding the mechanism of the carbon and nitrogen metabolism in the leaves of the albino mutant plants: the serious weakening of the carbon metabolism in the albino leaves led to a reduced nitrogen consumption. However, nitrogen catabolism was enhanced to generate/supply more carbon skeletons for energy metabolism, which helped to coordinate the dramatic changes in metabolism resulting from the carbon-deficiency stress in the albino leaves. Moreover, the reallocation of carbon and highly efficient recycling of endogenous ammonium also constituted a potential mechanism for regulating the balance of carbon and nitrogen metabolism in albino leaves under carbon-deficiency stress. All of these metabolic responses in albino leaves create a potential mechanism for regulating the balance of carbon and nitrogen metabolism under conditions of carbon deficiency. Moreover, the coordinated regulation of the carbon and nitrogen metabolism, including reallocation of carbon resource from secondary metabolites and amino acids, highly efficient way to recycle and store endogenous ammonium, plays a great role for the albino tea plant in surviving from the carbon deficiency stress.
分类号:
- 相关文献
作者其他论文 更多>>
-
Optimization of nutrient management improves productivity, quality and sustainability of albino tea cultivar Baiye-1
作者:Zhu, Yun;Ma, Lifeng;Geng, Saipan;Ruan, Jianyun;Zhu, Yun;Ma, Lifeng;Ruan, Jianyun;Ma, Lifeng;Ruan, Jianyun
关键词:free amino acid; catechin; organic substitution; nutrient use efficiency (NUE); greenhouse gas emissions; nitrogen nutrition; albino tea cultivar
-
Application of metabolic fingerprinting in tea quality evaluation
作者:He, Yun;Liu, Li;Li, Yan;Zhang, Qunfeng;Ruan, Jianyun;Inostroza, Alvaro Cuadros;Kierszniowska, Sylwia
关键词:Tea grade discrimination; Metabolomics; Organic acids; Lipids; Amino acids; Sensory
-
Aluminum Supplementation Mediates the Changes in Tea Plant Growth and Metabolism in Response to Calcium Stress
作者:Zhang, Hua;Ruan, Jianyun;Zhang, Qunfeng;Song, Yakang;Fan, Zhenglei;Hu, Jianhui
关键词:tea plant; calcium; aluminum; root growth; metabolic profile
-
Influence of Organic and Inorganic Fertilizers on Tea Growth and Quality and Soil Properties of Tea Orchards' Top Rhizosphere Soil
作者:Manzoor;Manzoor;Ma, Lifeng;Ni, Kang;Ruan, Jianyun;Manzoor
关键词:tea plant growth; chlorophyll; integrated fertilization; amino acids; catechins; macro and micronutrients; soil properties
-
Epigallocatechin gallate (EGCG) nanoselenium application improves tea quality (Camellia sinensis L.) and soil quality index without losing microbial diversity: A pot experiment under field condition
作者:Zhang, Xiangchun;Yang, Xiangde;Ruan, Jianyun;Chen, Hongping
关键词:Epigallocatechin gallate; Nanoselenium fertilizer; Tea quality; Soil quality index; Microbial diversity; Low-abundance taxa
-
Nitrogen transport and assimilation in tea plant (Camellia sinensis): a review
作者:Zhang, Wenjing;Ni, Kang;Long, Lizhi;Ruan, Jianyun;Zhang, Wenjing;Ni, Kang;Ruan, Jianyun
关键词:nitrogen transport; nitrate reduction; ammonia assimilation; NUE; camellia sinensis; challenges and prospects
-
Nitrogen addition reduces phosphorus availability and induces a shift in soil phosphorus cycling microbial community in a tea (Camellia sinensis L.) plantation
作者:Jiang, Yanyan;Yang, Xiangde;Ni, Kang;Ma, Lifeng;Shi, Yuanzhi;Ruan, Jianyun;Jiang, Yanyan;Ma, Lifeng;Wang, Yu;Cai, Yanjiang;Ma, Qingxu;Jiang, Yanyan
关键词:N addition; P availability; Phosphatase activities; P-cycling genes; Functional communities; Acidic tea soil