Estimating Sub-Pixel Soybean Fraction from Time-Series MODIS Data Using an Optimized Geographically Weighted Regression Model
文献类型: 外文期刊
第一作者: Hu, Qiong
作者: Hu, Qiong;Song, Qian;Tang, Huajun;Wu, Wenbin;Hu, Qiong;Ma, Yaxiong;Xu, Baodong;Xu, Baodong
作者机构:
关键词: geographically weighted regression; sub-pixel crop area; MODIS time series; forward stepwise selection; soybeans; Heilongjiang
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN: 2072-4292
年卷期: 2018 年 10 卷 4 期
页码:
收录情况: SCI
摘要: Soybean cultivation in China has significantly decreased due to the rising import of genetically modified soybeans from other countries. Understanding soybean's extent and change information is of great value for national agricultural policy implications and global food security. Some previous studies have explored the quantitative relationships between crop area and spectral variables derived from remote sensing data. However, both those linear or non-linear relationships were expressed by global regression models, which ignored the spatial non-stationarity of crop spectral signature and may limit the prediction accuracy. This study presented a geographically weighted regression model (GWR) to estimate fractional soybean at 250 m spatial resolution in Heilongjiang Province, one of the most important food production regions in China, using time-series MODIS data and high-quality calibration information derived from Landsat data. A forward stepwise optimization strategy was embedded with the GWR model to select the optimal subset of independent variables for soybeans. Normalized Difference Vegetation Index (NDVI) of Julian day 233 to 257 when soybeans are filling seed was found to be the most important temporal period for sub-pixel soybean area estimation. Our MODIS-based soybean area compared well with Landsat-based results at pixel-level. Also, there was a good agreement between the MODIS-based result and census data at county level, with the coefficient of determination (R2) of 0.80 and the root mean square error (RMSE) was 340.21 km 2. Additionally, F-test results showed GWR model had better model goodness-of-fit and higher prediction accuracy than the traditional ordinary least squares (OLS) model. These promising results suggest crop spectral variations both at temporal and spatial scales should be considered when exploring its relationship with pixel-level crop acreage. The optimized GWR model by combining an automated feature selection strategy has great potential for estimating sub-pixel crop area at regional scale based on remote sensing time-series data.
分类号:
- 相关文献
作者其他论文 更多>>
-
Extreme surface solar ultraviolet radiation events reduce maize yields in China
作者:Guan, Haixiang;Huang, Jianxi;Li, Xuecao;Zeng, Yelu;Su, Wei;Miao, Shuangxi;Zhu, Peng;Huang, Jianxi;Huang, Jianxi;Li, Xuecao;Zeng, Yelu;Su, Wei;Miao, Shuangxi;Jin, Zhenong;Ma, Yuyang;Wu, Wenbin;Wu, Wenbin;Wu, Bingfang;Wu, Bingfang
关键词:
-
Crop sample prediction and early mapping based on historical data: Exploration of an explainable FKAN framework
作者:Cheng, Feifei;Qiu, Bingwen;Yang, Peng;Wu, Wenbin;Yu, Qiangyi;Qian, Jianping;Wu, Bingfang;Chen, Jin;Chen, Xuehong;Tubiello, Francesco N.;Tryjanowski, Piotr;Takacs, Viktoria;Duan, Yuanlin;Lin, Lihui;Wang, Laigang;Zhang, Jianyang;Dong, Zhanjie
关键词:Historical Data; Sample generation; Crop mapping; Interpretability; Google Earth Engine
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Rapeseed Area Extraction Based on Time-Series Dual-Polarization Radar Vegetation Indices
作者:Zhu, Yiqing;Cao, Hong;Wu, Shangrong;Guo, Yongli;Song, Qian;Zhu, Yiqing;Cao, Hong;Wu, Shangrong;Song, Qian
关键词:polarization decomposition; radar vegetation index; crop distribution; Sentinel-1 data; rapeseed
-
A robust framework for mapping complex cropping patterns: The first national-scale 10 m map with 10 crops in China using Sentinel 1/2 images
作者:Qiu, Bingwen;Wu, Fangzheng;Hu, Xiang;Yang, Peng;Wu, Wenbin;Qian, Jianping;Chen, Jin;Chen, Xuehong;He, Liyin;Joe, Berry;Tubiello, Francesco N.;Wang, Laigang
关键词:Cropping patterns mapping; Model generalization; Dual-driven models; Crop diversity; Sentinel-1/2
-
Customized crop feature construction using genetic programming for early-and in-season crop mapping☆
作者:Wen, Caiyun;Lu, Miao;Xia, Lang;Sun, Jing;Shi, Yun;Wei, Yanbing;Wu, Wenbin;Lu, Miao;Bi, Ying;Bi, Ying
关键词:Remote Sensing; Crop mapping; Genetic Programming; Feature Construction; Customized feature
-
A point-supervised algorithm with multiscale semantic enhancement for counting multiple crop plants from aerial imagery
作者:Li, Huibin;Yu, Qiangyi;Qian, Jianping;Wu, Wenbin;Shi, Yun;Liu, Huaiyang;Wang, Wenbo;Geng, Changxing;Wang, Haozhou;Shi, Yun
关键词:Plant counting; Point supervision; Aerial imagery; Semantic enhancement; Density map