Efficient Degradation of Aflatoxin B-1 and Zearalenone by Laccase-like Multicopper Oxidase from Streptomyces thermocarboxydus in the Presence of Mediators

文献类型: 外文期刊

第一作者: Qin, Xing

作者: Qin, Xing;Xin, Yanzhe;Zou, Jiahuan;Su, Xiaoyun;Wang, Xiaolu;Wang, Yaru;Zhang, Jie;Tu, Tao;Yao, Bin;Luo, Huiying;Huang, Huoqing

作者机构:

关键词: multicopper oxidase; mycotoxin; aflatoxin; zearalenone; degradation; mediator

期刊名称:TOXINS ( 影响因子:5.075; 五年影响因子:5.305 )

ISSN:

年卷期: 2021 年 13 卷 11 期

页码:

收录情况: SCI

摘要: Multicopper oxidases (MCOs) are a diverse group of enzymes that could catalyze the oxidation of different xenobiotic compounds, with simultaneous reduction in oxygen to water. Aside from laccase, one member of the MCO superfamily has shown great potential in the biodegradation of mycotoxins; however, the mycotoxin degradation ability of other MCOs is uncertain. In this study, a novel MCO-encoding gene, StMCO, from Streptomyces thermocarboxydus, was identified, cloned, and heterologously expressed in Escherichia coli. The purified recombinant StMCO exhibited the characteristic blue color and bivalent copper ion-dependent enzyme activity. It was capable of oxidizing the model substrate ABTS, phenolic compound DMP, and azo dye RB5. Notably, StMCO could directly degrade aflatoxin B-1 (AFB(1)) and zearalenone (ZEN) in the absence of mediators. Meanwhile, the presence of various lignin unit-derived natural mediators or ABTS could significantly accelerate the degradation of AFB(1) and ZEN by StMCO. Furthermore, the biological toxicities of their corresponding degradation products, AFQ(1) and 13-OH-ZEN-quinone, were remarkably decreased. Our findings suggested that efficient degradation of mycotoxins with mediators might be a common feature of the MCOs superfamily. In summary, the unique properties of MCOs make them good candidates for degrading multiple major mycotoxins in contaminated feed and food.

分类号:

  • 相关文献
作者其他论文 更多>>