An interval number distance- and ranking-based method for remotely sensed image fuzzy clustering

文献类型: 外文期刊

第一作者: Guo, Jifa

作者: Guo, Jifa;Huo, Hongyuan;Peng, Guangxiong;Peng, Guangxiong

作者机构:

期刊名称:INTERNATIONAL JOURNAL OF REMOTE SENSING ( 影响因子:3.151; 五年影响因子:3.266 )

ISSN: 0143-1161

年卷期: 2018 年 39 卷 23 期

页码:

收录情况: SCI

摘要: Fuzzy c-means clustering is an important non-supervised classification method for remote-sensing images and is based on type-1 fuzzy set theory. Type-1 fuzzy sets use singleton values to express the membership grade; therefore, such sets cannot describe the uncertainty of the membership grade. Interval type-2 fuzzy c-means (IT2FCM) clustering and relevant methods are based on interval type-2 fuzzy sets. Real vectors are used to describe the clustering centres, and the average values of the upper and lower membership grades are used to determine the classification of each pixel. Thus, the width information for interval clustering centres and interval membership grades are ignored. The main contribution of this article is to propose an improved IT2FCM* algorithm by adopting interval number distance (IND) and ranking methods, which use the width information of interval clustering centres and interval membership grades, thus distinguishing this method from existing fuzzy clustering methods. Three different IND definitions are tested, and the distance definition proposed by Li shows the best performance. The second contribution of this work is that two fuzzy cluster validity indices, FS- and XB-, are improved using the IND. Three types of multi/hyperspectral remote-sensing data sets are used to test this algorithm, and the experimental results show that the IT2FCM* algorithm based on the IND proposed by Li performs better than the IT2FCM algorithm using four cluster validity indices, the confusion matrix, and the kappa coefficient (kappa). Additionally, the improved FS- index has more indicative ability than the original FS- index.

分类号:

  • 相关文献
作者其他论文 更多>>