Cloning and characterization of a specific UDP-glycosyltransferase gene induced by DON and Fusarium graminearum
文献类型: 外文期刊
第一作者: Zhao, Lanfei
作者: Zhao, Lanfei;Ma, Xin;Su, Peisen;Ge, Wenyang;Li, Anfei;Wang, Hongwei;Kong, Lingrang;Wu, Hongyan;Guo, Xiuxiu
作者机构:
关键词: UDP-glycosyltransferase; Fusarium graminearum; Triticum aestivum; Deoxynivalenol; TaUGT5
期刊名称:PLANT CELL REPORTS ( 影响因子:4.57; 五年影响因子:4.463 )
ISSN: 0721-7714
年卷期: 2018 年 37 卷 4 期
页码:
收录情况: SCI
摘要: TaUGT5: can reduce the proliferation and destruction of F. graminearum and enhance the ability of FHB resistance in wheat. Deoxynivalenol (DON) is one of the most important toxins produced by Fusarium species that enhances the spread of the pathogen in the host. As a defense, the UDP-glycosyltransferase (UGT) family has been deduced to transform DON into the less toxic form DON-3-O-glucoside (D3G), but the specific gene member in wheat that is responsible for Fusarium head blight (FHB) resistance has been little investigated and proved. In this study, a DON and Fusarium graminearum responsive gene TaUGT5, which is specific for resistant cultivars, was cloned with a 1431 bp open reading frame (ORF) encoding 476 amino acids in Sumai3. TaUGT5 is located on chromosome 2B, which has been confirmed in nulli-tetrasomic lines of Chinese Spring (CS) and is solely expressed among three homologs on the A, B and D genomes. Over-expression of this gene in Arabidopsis conferred enhanced tolerance when grown on agar plates that contain DON. Similarly, the coleoptiles of wheat over-expressing TaUGT5 showed more resistance to F. graminearum, evidencing reduced proliferation and destruction of plant tissue by the pathogen. However, the disease resistance in spikes was not as significant as that on coleoptile compared with wild-type plants. A subcellular localization analysis revealed that TaUGT5 was localized on the plasma membrane of tobacco leaf epidermal cells. It is possible that TaUGT5 could enhance tolerance to DON, protect the plant cell from the pathogen infection and result in better maintenance of the cell structure, which slows down pathogen proliferation in plant tissue.
分类号:
- 相关文献
作者其他论文 更多>>
-
Multiomics analyses of the effects of LED white light on the ripening of apricot fruits
作者:Bai, Chunmei;Ma, Lili;Jiang, Yuanye;Wu, Caie;Bai, Chunmei;Zheng, Yanyan;Ma, Lili;Jiang, Yuanye;Chen, Shaoqing;Wang, Hongwei;He, Xuelian;Han, Lichun;Zhou, Xinyuan;Wang, Qing;Zuo, Jinhua;Watkins, Christopher Brian
关键词:Light-emitting diodes; Transcriptomics; Metabolomics; ATAC-Seq
-
FZP modulates tillering via OsMADS57 in rice
作者:Xing, Hongwei;Wang, Huan;Huang, Yongyu;Ma, Xin;Wu, Sheng;Li, Yuanjie;Sun, Chuanqing;Sun, Hongying;Huang, Yongyu;Li, Yuanjie;Sun, Chuanqing
关键词:rice; tiller number;
FZP ;OsMADS57 ; domestication; differentiation -
Evaluation of TaMFT-3A and TaMKK3-4A alleles on wheat pre-harvest sprouting
作者:Zhang, Bo-Wen;Ma, Jian;Zhang, Bo-Wen;Yang, Bai-Song;Wan, Xiao-Neng;Ma, Xin;Lyu, Kai-Di;Wang, Han;Yang, Shu-Ying;Zhang, Hui-Hui;Hao, Shu-Nv;Sun, Guo-Zhong
关键词:wheat; pre-harvest spouting; recombinant inbred line; haplotype; marker-assisted selection
-
Metabolic mechanism of a novel carboxylesterase YvaK in Priestia aryabhattai DPX-1 for carbamate insecticide indoxacarb detoxification
作者:Zou, Ping;Li, Zijing;Li, Shengyang;Geng, Yuehan;Ma, Xin;Wu, Xiangwei;Hua, Rimao;Fang, Liancheng;Wu, Xiangwei;Hua, Rimao;Fang, Liancheng;Wu, Xiangwei;Fang, Liancheng;Li, Shengyang
关键词:Biodegradation kinetics; Priestia aryabhattai; Carboxylesterase; Detoxification; Metabolic mechanism
-
Spatio-temporal evolution of complex agricultural land use and its drivers in a super-large irrigation district (Hetao) of the upper Yellow River Basin (2000-2021)
作者:Li, Xinyi;Xiao, Xue;Xu, Xu;Sun, Chen;Li, Zhengzhong;Ma, Xin;Wang, Jun
关键词:land cover; cropping system classification; phenology; remote sensing; agricultural irrigated area
-
Tomato yields and quality declines due to elevated soil CO2
作者:Zhang, Xueyan;Ma, Xin
关键词:Carbon capture and storage; Leakage; Elevated soil CO2; Response of tomato; Quality
-
Elucidating the impact of intermolecular forces on the formation and internal structure of high-methoxyl pectin aggregates
作者:Zhao, Shaojie;Miao, Liping;Ma, Xin;Yang, Pu;Zhang, Lizhen;Zhao, Shaojie;Zheng, Jinkai;Tian, Guifang
关键词:High-methoxyl pectin; Intermolecular force; Aggregation; Aggregate; Internal structure; Hydrophobic microdomain