NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn-Air Batteries: The Effect of Surface S Residues

文献类型: 外文期刊

第一作者: Wang, Tanyuan

作者: Wang, Tanyuan;Liang, Jiashun;Han, Jiantao;Huang, Yunhui;Li, Qing;Nam, Gyutae;Jang, Haeseong;Cho, Jaephil;Nam, Gyutae;Jang, Haeseong;Cho, Jaephil;Jin, Yue

作者机构:

关键词: energy storage; NiFe hydroxides; oxygen evolution reaction; residual S; Zn-air batteries

期刊名称:ADVANCED MATERIALS ( 影响因子:30.849; 五年影响因子:30.254 )

ISSN: 0935-9648

年卷期: 2018 年 30 卷 27 期

页码:

收录情况: SCI

摘要: A facile H2O2 oxidation treatment to tune the properties of metal disulfides for oxygen evolution reaction (OER) activity enhancement is introduced. With this method, the degree of oxidation can be readily controlled and the effect of surface S residues in the resulted metal (oxy)hydroxides for the OER is revealed for the first time. The developed NiFe (oxy)hydroxide catalyst with residual S demonstrates an extraordinarily low OER overpotential of 190 mV at the current density of 10 mA cm(-2) after coupling with carbon nanotubes, and outstanding performance in Zn-air battery tests. Theoretical calculation suggests that the surface S residues can significantly reduce the adsorption free energy difference between O* and OH* intermediates on the Fe sites, which should account for the high OER activity of NiFe (oxy)hydroxide catalysts. This work provides significant insight regarding the effect of surface heteroatom residues in OER electrocatalysis and offers a new strategy to design high-performance and cost-efficient OER catalysts.

分类号:

  • 相关文献
作者其他论文 更多>>