A Nck-associated protein 1-like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice

文献类型: 外文期刊

第一作者: Huang, Lichao

作者: Huang, Lichao;Chen, Long;Wang, Lan;Yang, Yaolong;Ren, Deyong;Dai, Liping;Gao, Yihong;Zou, Weiwei;Lu, Xueli;Zhang, Guangheng;Zhu, Li;Hu, Jiang;Chen, Guang;Shen, Lan;Dong, Guojun;Gao, Zhenyu;Guo, Longbiao;Qian, Qian;Zeng, Dali;Rao, Yuchun

作者机构:

关键词: drought sensitivity; stomatal closure; abscisic acid; stomatal density; cuticle; rice (Oryza sativa L; )

期刊名称:PLANT JOURNAL ( 影响因子:6.417; 五年影响因子:7.627 )

ISSN: 0960-7412

年卷期: 2019 年 98 卷 5 期

页码:

收录情况: SCI

摘要: Water deficit is a major environmental threat affecting crop yields worldwide. In this study, a drought stress-sensitive mutant drought sensitive 8 (ds8) was identified in rice (Oryza sativa L.). The DS8 gene was cloned using a map-based approach. Further analysis revealed that DS8 encoded a Nck-associated protein 1 (NAP1)-like protein, a component of the SCAR/WAVE complex, which played a vital role in actin filament nucleation activity. The mutant exhibited changes in leaf cuticle development. Functional analysis revealed that the mutation of DS8 increased stomatal density and impaired stomatal closure activity. The distorted actin filaments in the mutant led to a defect in abscisic acid (ABA)-mediated stomatal closure and increased ABA accumulation. All these resulted in excessive water loss in ds8 leaves. Notably, antisense transgenic lines also exhibited increased drought sensitivity, along with impaired stomatal closure and elevated ABA levels. These findings suggest that DS8 affects drought sensitivity by influencing actin filament activity.

分类号:

  • 相关文献
作者其他论文 更多>>