Thiophenes from Echinops grijsii as a Preliminary Approach To Control Disease Complex of Root-Knot Nematodes and Soil-Borne Fungi: Isolation, Activities, and Structure-Nonphototoxic Activity Relationship Analysis

文献类型: 外文期刊

第一作者: Liu, Tingting

作者: Liu, Tingting;Jiang, Hongyun;Zhang, Lan;Zhang, Yanning;Mao, Liangang;Wu, Haibo

作者机构:

关键词: Echinops grijsii Hance; thiophene; light-independent toxicity; nematicidal activity; antifungal activity; disease complex

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN: 0021-8561

年卷期: 2019 年 67 卷 22 期

页码:

收录情况: SCI

摘要: Naturally occurring thiophenes possess excellent nematicidal and fungicidal activities. However, thiophenes often have limited application in soil due to their light-dependent toxicity given the living and reproductive condition of soil-borne pathogens. In this study, six new (1-6) and six known thiophenes (7-12) were isolated from Echinops grijsii. Compounds 1-2, 4-5, 8-9, 11, and 12 showed stronger nematicidal activity against Meloidogyne incognita than commercial nematicide abamectin. 4-10 were demonstrated as nonphototoxic thiophenes. Among these, 4 and 8 were the most potent thiophenes (LC50 values 2.57 and 0.91 mu g/mL in light, 1.80 and 0.86 mu g/mL in dark, respectively) against M. incognita. SAP. revealed that thiophene skeleton was essential for nematicidal activity, while disubstituted groups were helpful for nonphototoxicity. Although an increased number of acetylenes improved activity, it decreased nonphototoxicity. Acyl groups could suppress the effects of light on activity, with the level of inhibitory effects depending on its number and chain length, while chlorine played important roles in promoting activity. Additionally, compounds 1-2, 4-5, 7, 8, and 10 displayed antifungal activity against six soil-borne fungi in various degrees. The discovery of nonphototoxic thiophenes and elucidation of SAR provide important information for the exploitation and utilization of thiophenes in the integrative management regarding disease complexes caused by the combination of root-knot nematode and soil-borne fungi.

分类号:

  • 相关文献
作者其他论文 更多>>