Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana
文献类型: 外文期刊
第一作者: Yu, Yuehua
作者: Yu, Yuehua;Ni, Zhiyong;Wang, Yi;Wan, Huina;Hu, Zheng;Jiang, Qiyan;Sun, Xianjun;Zhang, Hui
作者机构:
关键词: Soybean; Drought stress; gmamiiR169c; NF-YA
期刊名称:PLANT SCIENCE ( 影响因子:4.729; 五年影响因子:5.132 )
ISSN: 0168-9452
年卷期: 2019 年 285 卷
页码:
收录情况: SCI
摘要: The miR169 family, a large-scale microRNA gene family conserved in plants, is involved in stress responses, although how soybean miR169 functions in response to drought stress remains unclear. We show that gma-miR169c exerts a negative regulatory role in the response to drought stress by inhibiting the expression of its target gene, nuclear factor Y-A (NF-YA). A real-time RT-PCR analysis indicated that gma-miR169c is widely expressed in soybean tissues and induced by polyethylene glycol (PEG), high salt, cold stress and abscisic acid (ABA). Histochemical It-glucuronidase (GUS) staining showed that the gma-miR169c promoter drives GUS reporter gene expression in various transgenic Arabidopsis tissues, and the stress-induced pattern was confirmed in transgenic Arabidopsis and transgenic soybean hairy roots. Arabidopsis overexpressing gma-miR169c is more sensitive to drought stress, with reduced survival, accelerated leaf water loss, and shorter root length than wild-type plants. We identified a precise cleavage site for 10 gma-miR169c targets and found reduced transcript levels of the AtNFYA1 and AtNFYA5 transcription factors in gma-miR169c-overexpressing Arabidopsis and reduced expression of the stress response genes AtRD29A, AtRD22, AtGSTU25 and AtCOR15A. These results indicate that gma-miR169c plays a negative regulatory role in drought stress and is a candidate miRNA for improving plant drought adaptation.
分类号:
- 相关文献
作者其他论文 更多>>
-
Nanomaterials: Cross-disciplinary applications in ornamental plants
作者:Fu, Li;Zeng, Zhen;Wang, Yi;Wang, Huanxiao;Gou, Rongxin;Wang, Di;Jiang, Yin;Wei, Zunzheng;Li, Yanbing;Chen, Benxue;Zheng, Yuhong;Hamed, Khalid E.;Gou, Rongxin;Wang, Di;Jiang, Yin;Zhang, Guojun
关键词:NMs; ornamental plants; postharvest physiology; stress resistance; tissue culture
-
Biochar increases pakchoi yield by regulating soil bacterial communities but reduces it through soil fungi in vegetable soil
作者:Zhong, Lei;Gu, Zhibin;Wang, Ruying;Wang, Hongyue;Li, Gaoyuan;Sun, Yuru;Xiao, Hui;Zhang, Hui
关键词:High nitrogen fertilizer; Biochar; Soil microbial diversity; Yield; Agroecosystem
-
A Precise Simultaneous Sowed Control System for Maize Seed and Fertilizer
作者:Liang, Jinxin;Pan, Feng;Chen, Jincheng;Zhang, Hui;Ji, Chao;Liang, Jinxin;Liang, Jinxin;Pan, Feng;Chen, Jincheng;Zhang, Hui;Ji, Chao
关键词:accurate simultaneous sowing; seed fertilizer location; real-time control; motor drive
-
Genome-wide identification of class III peroxidases in colored calla lily and enhanced resistance to soft rot bacteria
作者:Wang, Di;Wang, Yi;Gou, Rongxin;Jiang, Yin;Zeng, Zhen;Wei, Zunzheng;Wang, Di;Gou, Rongxin;Jiang, Yin;Zhang, Guojun;Yang, Tuo
关键词:Class III peroxidases; Soft rot; MeJA; BTH
-
Near-gapless and haplotype-resolved apple genomes provide insights into the genetic basis of rootstock-induced dwarfing
作者:Li, Wei;Li, Hui;Sun, Haochen;Wang, Shiyao;Wang, Zijun;Li, Yuqi;Zhou, Bowen;Fan, Xingqiang;Xiong, Yao;Wang, Yi;Xu, Xuefeng;Han, Zhenhai;Chu, Chong;Zhang, Hengtao;Foster, Toshi M.;Lopez-Girona, Elena;Yu, Jiaxin;Li, Yi;Ma, Yue;Zhang, Ke;Zhang, Ke;Han, Yongming;Deng, Cecilia H.
关键词:
-
Isolation and Functional Characterization of a Constitutive Promoter in Upland Cotton (Gossypium hirsutum L.)
作者:Yang, Yang;Li, Xiaorong;Li, Chenyu;Zhang, Hui;Tuerxun, Zumuremu;Li, Juan;Liu, Zhigang;Chen, Guo;Cai, Darun;Chen, Xunji;Li, Bo;Li, Chenyu;Hui, Fengjiao
关键词:Gossypium hirsutum L.; GUS; constitutive promoter
-
Silicon application enhances wheat defence against Sitobion avenae F. by regulating plant physiological-biochemical responses
作者:Qi, Xiuxiu;Wang, Zhonghua;Han, Yanlai;Wang, Yi;Jiang, Ying;Qi, Xiuxiu;Xue, Xia;Li, Shaojian;Zhang, Zelong
关键词:TEOS; Life cycle of S. avenae F.; Secondary metabolites; Plant hormones; Defense related enzymes