Research on the Economic Loss Model of Invasive Alien Species Based on Multidimensional Data Spatialization-A Case Study of Economic Losses Caused by Hyphantria cunea in Jiangsu Province

文献类型: 外文期刊

第一作者: Li, Cheng

作者: Li, Cheng;Zhou, Yongbin;Wang, Cong;Pan, Xubin;Wang, Ying;Qi, Xiaofeng;Wan, Fanghao

作者机构:

关键词: Hyphantria cunea; economic loss assessment model; DID model; SDMs; MaxEnt; future climate conditions

期刊名称:BIOLOGY-BASEL ( 影响因子:3.5; 五年影响因子:4.0 )

ISSN:

年卷期: 2025 年 14 卷 5 期

页码:

收录情况: SCI

摘要: IAS imposes significant impacts on native ecosystems and economies. Current assessment methods for economic losses predominantly rely on habitat suitability estimation and database extrapolation, often lacking integration of causal inference and dynamic spatial drivers. H. cunea, a pervasive invasive pest in Jiangsu Province, China, exemplifies this challenge through its rapid spread and multi-sector economic impacts. To address these limitations, we innovatively integrated three models: (1) Difference-in-Differences (DID) quantified causal economic impacts through spatiotemporal comparison of infested/non-infested areas; (2) GeoDetector identified key spatial drivers via stratified heterogeneity analysis; (3) MaxEnt projected ecological suitability under climate scenarios. The synergy enabled dynamic loss attribution: GeoDetector optimized DID's variable selection, while MaxEnt constrained loss extrapolation to ecologically plausible zones, achieving multi-scale causal-spatial-climate integration absent in conventional approaches. In Jiangsu Province, H. cunea caused CNY 89.2 million in primary sector losses in 2022, with forestry disproportionately impacted, accounting for 58.3% of the total losses. The DID model revealed nonlinear temporal impacts indicating a loss of 0.163 forestry per 30 m2 grid, while MaxEnt projected 22% habitat contraction under the SSP5-8.5 scenario by 2060, which corresponds to climate-adjusted losses of CNY 147 million. Spatial prioritization identified northern Jiangsu (e.g., Xuzhou, Lianyungang) as high-risk zones requiring immediate intervention. The framework enables spatially explicit prioritization of containment efforts-grids identified as high-risk necessitate a tripling of funding in comparison to low-risk areas. And SSP-specific loss projections support dynamic budget planning under climate uncertainty. By integrating causal attribution, ecological realism, and climate resilience, this model transforms IAS management from reactive firefighting to proactive, data-driven governance. It provides a replicable toolkit for balancing ecological preservation and economic stability in the Anthropocene.

分类号:

  • 相关文献
作者其他论文 更多>>