Recent trends of machine learning applied to multi-source data of medicinal plants
文献类型: 外文期刊
第一作者: Zhang, Yanying
作者: Zhang, Yanying;Wang, Yuanzhong;Zhang, Yanying
作者机构:
关键词: Machine learning; Medicinal plant; Multi-source data; Data fusion; Application
期刊名称:JOURNAL OF PHARMACEUTICAL ANALYSIS ( 影响因子:8.8; 五年影响因子:7.2 )
ISSN: 2095-1779
年卷期: 2023 年 13 卷 12 期
页码:
收录情况: SCI
摘要: In traditional medicine and ethnomedicine, medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide. In particular, the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019 (COVID-19) pandemic has attracted extensive attention globally. Medicinal plants have, therefore, become increasingly popular among the public. However, with increasing demand for and profit with medicinal plants, commercial fraudulent events such as adulteration or counterfeits sometimes occur, which poses a serious threat to the clinical outcomes and interests of consumers. With rapid advances in artificial intelligence, machine learning can be used to mine information on various medicinal plants to establish an ideal resource database. We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants. The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants. The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of Xi'an Jiaotong University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
分类号:
- 相关文献
作者其他论文 更多>>
-
Rapid determination of geographical authenticity of Gastrodia elata f. glauca using Fourier transform infrared spectroscopy and deep learning
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Gastrodia elata f. glauca; Fourier transform infrared spectroscopy; Deep learning; Data driven version of soft independent; modeling of class analogy
-
PipC affects the virulence of Salmonella enterica serovar Enteritidis and its deletion strain provides effective immune protection in mice
作者:Zhang, Lu;Chen, Yubin;Li, Yuntai;Chen, Li;Zhang, Yanying;Shi, Qiumei;Wu, Tonglei;Yan, Zhigang;Yang, Xiaowen;Chen, Yingyu;Li, Yonghui
关键词:
Salmonella enterica serovarEnteritidis ; PipC; virulence; immune protection; vaccine -
Rapid prediction of nucleosides content and origin traceability of Boletus bainiugan using Fourier transform near-infrared spectroscopy combined with chemometrics
作者:Deng, Guangmei;Li, Jieqing;Deng, Guangmei;Wang, Yuanzhong;Liu, Honggao
关键词:Fourier transform near-infrared spectroscopy; Nucleoside compounds; Climatic factors; Two-dimensional correlation spectroscopy; Residual neural networks
-
Predicting the suitable habitat distribution of Polygonatum kingianum under current and future climate scenarios in southwestern Yunnan, China
作者:Hu, Xiaoyan;Yang, Shaobing;Li, Zhimin;Wang, Yuanzhong;Hu, Xiaoyan
关键词:Polygonatum kingianum; Maximum entropy model; Species distribution; Suitable habitat; Geographical traceability
-
Geographical origin identification of Dendrobium Officinale based on FT-NIR and ATR-FTIR spectroscopy
作者:Han, Jiaqi;Hu, Qiang;Wang, Yuanzhong
关键词:Spectral analysis; Data fusion; Two-dimensional correlation spectroscopy; The residual convolutional neural network; Dendrobium officinale Kimura & Migo
-
Classification of bolete species and drying temperature using LC-MS and infrared spectroscopy and simultaneous prediction of their major compounds using chemometrics
作者:Zheng, Chuanmao;Li, Jieqing;Zheng, Chuanmao;Wang, Yuanzhong;Liu, Honggao
关键词:Boletes; Organic acids; Postharvest drying; Species identification; Quality assessment
-
Infrared spectroscopy combined with machine learning: A fast method for origin tracing and dry matter content prediction of Dendrobium officinale Kimura et Migo
作者:Feng, Yangna;Feng, Yangna;Yang, Shaobing;Wang, Yuanzhong
关键词:FT-NIR; ATR-FTIR; Dendrobium officinal; Prediction; Origin tracing