Research on Key Genes for Flowering of Bambusaoldhamii Under Introduced Cultivation Conditions

文献类型: 外文期刊

第一作者: Ye, Shanwen

作者: Ye, Shanwen;Chen, Jiamei;Jiang, Tingguo;Yang, Jie;Zheng, Rong;Wei, Xuhui;Luo, Suzhen;Chen, Shuanglin

作者机构:

关键词: introduced cultivation; Bambusaoldhamii; flowering; key genes; environmental stresses

期刊名称:GENES ( 影响因子:2.8; 五年影响因子:3.2 )

ISSN:

年卷期: 2025 年 16 卷 7 期

页码:

收录情况: SCI

摘要: Background: Bambusaoldhamii is an important economic bamboo species. However, flowering occurred after its introduction and cultivation, resulting in damage to the economy of bamboo forests. Currently, the molecular mechanism of flowering induced by introduction stress is still unclear. This study systematically explored the key genes and regulatory pathways of flowering in Bambusaoldhamii under introduction stress through field experiments combined with transcriptome sequencing and weighted gene co-expression network analysis (WGCNA), with the aim of providing a basis for flower-resistant cultivation and molecular breeding of bamboo. Results: The study conducted transcriptome sequencing on flowering and non-flowering Bambusaoldhamii bamboo introduced from Youxi, Fujian Province for 2 years, constructed a reference transcriptome containing 213,747 Unigenes, and screened out 36,800-42,980 significantly differentially expressed genes (FDR < 0.05). The results indicated that the photosensitive gene CRY and the temperature response gene COR413-PM were significantly upregulated in the flowering group; the expression level of the heavy metal detoxification gene MT3 increased by 27.77 times, combined with the upregulation of the symbiotic signaling gene NIN. WGCNA analysis showed that the expression level of the flower meristem determination gene AP1/CAL/FUL in the flowering group was 90.38 times that of the control group. Moreover, its expression is regulated by the cascade synergy of CRY-HRE/RAP2-12-COR413-PM signals. Conclusions: This study clarifies for the first time that the stress of introducing Bambusaoldhamii species activates the triad pathways of photo-temperature signal perception (CRY/COR413-PM), heavy metal detoxification (MT3), and symbiotic regulation (NIN), collaboratively driving the AP1/CAL/FUL gene expression network and ultimately triggering the flowering process.

分类号:

  • 相关文献
作者其他论文 更多>>