Glucosinolate Profiles in Different Organs of 111 Radish Accessions and Candidate Genes Involved in Converting Glucobrassicin to 4-Hydroxyglucobrassicin
文献类型: 外文期刊
第一作者: Wang, Yanping
作者: Wang, Yanping;Wang, Qingbiao;Sun, Honghe;Zhang, Ziye;Qan, Huihui;Zhang, Li;Wang, Yanping;Wang, Qingbiao;Sun, Honghe;Zhang, Ziye;Qan, Huihui;Zhang, Li;Wang, Yanping;Wang, Qingbiao;Sun, Honghe;Zhang, Ziye;Zhang, Li;Zhao, Xuezhi;He, Hongju
作者机构:
关键词: radish; glucosinolate; genotype; organs; RsCYP81F1/2/3
期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.895; 五年影响因子:6.048 )
ISSN: 0021-8561
年卷期: 2022 年 70 卷 2 期
页码:
收录情况: SCI
摘要: Glucosinolate (GSL) not only has highly physiological function for plants but also has considerable human interest. We analyzed the GSL compositions and levels in four organs of 111 radish accessions. Seven major GSLs were detected (approximately 5-245 mu mol g(-1) DW), among which 4-(methylsulfinyl)but-3-enyl GSL and 4-methylsulfanyl-3-butenyl GSL were the dominant GSLs. GSL levels varied substantially among species and groups, and some genotypes/groups with special GSL profiles were identified. The total GSL level was higher in seeds than in sprouts, taproots, and leaves. Additionally, a correlation analysis revealed that seed 4-(methylsulfinyl)but-3-enyl GSL levels were highly correlated with sprout GSL levels. Moreover, a candidate gene (RsCYP81F2.3) encoding an enzyme that catalyzes the conversion of indol-3-ylmethyl GSL to 4-hydroxyindol-3-ylmethyl GSL was identified based on the detection and analysis of three radish accessions with relatively high indol-3-ylmethyl GSL, low 4-hydroxyindol-3-ylmethyl GSL, and 4-methoxyindol-3-ylmethyl GSL levels in their seeds. Our results provide some insights for finding materials and genes relevant for breeding new varieties with ideal GSL compositions and levels.
分类号:
- 相关文献
作者其他论文 更多>>
-
Short-term high-light intensity and low temperature improve the quality and flavor of lettuce grown in plant factory
作者:Zhang, Li;Huang, Tao;Jiang, Hui;Song, Bo;Duan, Zhiling;Li, Yuejian;Yang, Xiao;Yang, Qichang;Zhang, Qiqi;Song, Hongyuan;Escalona Contreras, Victor Hugo
关键词:light quality; temperature; nutritional value; bitterness; leafy vegetables
-
A self-adaptive parallel image stitching algorithm for unmanned aerial vehicles in edge computing environments
作者:Xu, Xin;Zhang, Li;Yue, Jibo;Zhong, Heming;Wang, Ying;Qiao, Hongbo;Liu, Jie;Lu, Yanhui
关键词:UAV remote sensing; panoramic stitching; multi-core CPU; multi process; edge computing
-
Integrative Analysis of Oleosin Genes Provides Insights into Lineage-Specific Family Evolution in Brassicales
作者:Zou, Zhi;Zhang, Li;Zhao, Yongguo;Zhang, Li;Zhao, Yongguo
关键词:whole-genome duplication; gene expansion; evolutionary analysis; synteny analysis; orthogroup; divergence
-
N123I mutation in the ALV-J receptor-binding domain region enhances viral replication ability by increasing the binding affinity with chNHE1
作者:Yu, Mengmeng;Zhang, Yao;Zhang, Li;Wang, Suyan;Liu, Yongzhen;Xu, Zhuangzhuang;Liu, Peng;Chen, Yuntong;Guo, Ru;Meng, Lingzhai;Zhang, Tao;Fan, Wenrui;Qi, Xiaole;Gao, Li;Zhang, Yanping;Cui, Hongyu;Gao, Yulong;Gao, Yulong;Gao, Yulong
关键词:
-
Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research
作者:Wang, Tingting;Xu, Jiaxin;Liu, Peng;Hou, Xin;Yang, Long;Zhang, Li;Chen, Jian
关键词:microbiological fertilizer; plant-growth-promoting bacteria; crop growth; soil remediation
-
OASL suppresses infectious bursal disease virus replication by targeting VP2 for degrading through the autophagy pathway
作者:Wang, Suyan;Xu, Zhuangzhuang;Liu, Yongzhen;Yu, Mengmeng;Zhang, Tao;Liu, Peng;Qi, Xiaole;Chen, Yuntong;Meng, Lingzhai;Guo, Ru;Zhang, Li;Fan, Wenrui;Gao, Li;Duan, Yulu;Zhang, Yanping;Cui, Hongyu;Gao, Yulong;Gao, Yulong;Gao, Yulong;Gao, Yulong
关键词:IBDV; OASL; VP2; degradation; autophagy
-
Advances in and Perspectives on Transgenic Technology and CRISPR-Cas9 Gene Editing in Broccoli
作者:Zhang, Li;Meng, Sufang;Liu, Yumei;Han, Fengqing;Xu, Tiemin;Li, Zhansheng;Zhang, Li;Xu, Tiemin;Zhao, Zhiwei;Li, Zhansheng
关键词:broccoli; advances; gene editing; CRISPR-Cas9; Agrobacterium-mediated transformation