A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements

文献类型: 外文期刊

第一作者: Rahman, Shafeeq Ur

作者: Rahman, Shafeeq Ur;Li, Yanliang;Rahman, Shafeeq Ur;Wang, Xiaojie;Cheng, Hefa;Wang, Xiaojie;Shahzad, Muhammad;Bashir, Owais

作者机构:

关键词: Nanoparticles; Trace elements; Absorption; Plant growth; Phytotoxicity; Plant tolerance

期刊名称:ENVIRONMENTAL POLLUTION ( 影响因子:9.988; 五年影响因子:10.366 )

ISSN: 0269-7491

年卷期: 2022 年 310 卷

页码:

收录情况: SCI

摘要: Trace elements (TEs) from various natural and anthropogenic activities contaminate the agricultural water and soil environments. The use of nanoparticles (NPs) as nano-fertilizers or nano-pesticides is gaining popularity worldwide. The NPs-mediated fertilizers encourage the balanced availability of essential nutrients to plants compared to traditional fertilizers, especially in the presence of excessive amounts of TEs. Moreover, NPs could reduce and/or restrict the bioavailability of TEs to plants due to their high sorption ability. In this review, we summarize the potential influence of NPs on plant physiological attributes, mineral absorption, and TEs sorption, accumulation, and translocation. It also unveils the NPs-mediated TE scavenging-mechanisms at plant and soil interface. NPs immobilized TEs in soil solution effectively by altering the speciation of TEs and modifying the physiological, biochemical, and biological properties of soil. In plants, NPs inhibit the transfer of TEs from roots to shoots by inducing structural modifications, altering gene transcription, and strengthening antioxidant defense mechanisms. On the other hand, the mechanisms underpinning NPs-mediated TEs absorption and cytotoxicity mitigation differ depending on the NPs type, distribution strategy, duration of NP exposure, and plants (e.g., types, varieties, and growth rate). The review highlights that NPs may bring new possibilities for resolving the issue of TE cytotoxicity in crops, which may also assist in reducing the threats to the human dietary system. Although the potential ability of NPs in decontaminating soils is just beginning to be understood, further research is needed to uncover the sub-cellular-based mechanisms of NPs-induced TE scavenging in soils and absorption in plants.

分类号:

  • 相关文献
作者其他论文 更多>>