Orchard classification based on super-pixels and deep learning with sparse optical images
文献类型: 外文期刊
第一作者: Li, Jingbo
作者: Li, Jingbo;Yang, Guijun;Yang, Hao;Li, Jingbo;Xu, Weimeng;Feng, Haikuan;Xu, Bo;Chen, Riqiang;Zhang, Chengjian;Wang, Han;Yang, Guijun
作者机构:
关键词: Time series; Deep learning; Transformer; SAR data; Orchard
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 215 卷
页码:
收录情况: SCI
摘要: Reliable and accurate classification of orchards is important for the dynamic monitoring of large-scale orchards and food security evaluation. At present, the very similar spectral profiles of different fruit trees and the high susceptibility of optical data to interference by weather conditions limit the resolution of orchard classification. Synthetic Aperture Radar (SAR) imagery provides an advanced solution to this problem, with the advantages of being immune to weather conditions and advances in deep learning techniques. This paper presents an orchard classification model (STCM) with optical and SAR fusion, which integrates the advantages of the Simple NonIterative Clustering (SNIC) super-pixel algorithm with a deep learning algorithm based on a multi-headed attention mechanism, and it achieves the best classification accuracy of above 0.82 in comparison with existing deep learning models. Meanwhile, the model has exceptional classification accuracy and robustness in a study area with fragmented plots, many fruit tree species, and various distributions of optical images. In the absence of optical data, the classification accuracy of the STCM model using only SAR data is around 0.70, which makes the model have a promising potential application value. This study provides a technical solution for accurately obtaining different orchard categories in high-resolution remotely sensed orchard images. The study helps to improve the management and operation of orchards and provides a strong basis for decision-making in the fruit industry to enhance the sustainability of the global fruit industry.
分类号:
- 相关文献
作者其他论文 更多>>
-
Expression, Polymorphism, and Potential Functional Sites of the BMPR1A Gene in the Sheep Horn
作者:Zhang, Guoqing;Wang, Shoufeng;Zhang, Guoqing;Chu, Mingxing;Yang, Hao;Li, Hao;Shi, Jianxin;Feng, Pingjie;Pan, Zhangyuan
关键词:BMPR1A; sheep; horn; allele-specific expressions; SNPs
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Winter Wheat Yield Estimation with Color Index Fusion Texture Feature
作者:Yang, Fuqin;Yan, Jiayu;Guo, Lixiao;Tan, Jianxin;Meng, Xiangfei;Xiao, Yibo;Liu, Yang;Feng, Haikuan;Liu, Yang;Feng, Haikuan
关键词:UAV; color index; fusion texture; partial least squares; random forest
-
Pretrained Deep Learning Networks and Multispectral Imagery Enhance Maize LCC, FVC, and Maturity Estimation
作者:Hu, Jingyu;Feng, Hao;Shen, Jianing;Wang, Jian;Guo, Wei;Qiao, Hongbo;Yue, Jibo;Wang, Qilei;Liu, Yang;Liu, Yang;Feng, Haikuan;Yang, Hao;Niu, Qinglin;Niu, Qinglin
关键词:unmanned aerial vehicle; crop leaf chlorophyll content; fractional vegetation cover; maturity; deep learning; ensemble learning; maize
-
Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Ma, Yanpeng;Bian, Mingbo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo
关键词:AGB; ASD; UHD185; Harmonic components; PLSR
-
A fast and lightweight detection model for wheat fusarium head blight spikes in natural environments
作者:Gao, Chunfeng;Guo, Wei;Gong, Zheng;Yue, Jibo;Fu, Yuanyuan;Yang, Chenghai;Feng, Haikuan
关键词:Deep learning; YOLOv5s; Fusarium head blight; Real -time detection; Lightweight architecture
-
Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm
作者:Li, Yafeng;Xu, Xingang;Zhu, Yaohui;Xue, Hanyu;Li, Yafeng;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Yang, Xiaodong;Meng, Yang;Jiang, Xiangtai;Xue, Hanyu
关键词:different varieties of grapes; leaf chlorophyll content; hyperspectral remote sensing; data-processing; RFR