Engineering Escherichia coli for high-yielding 2,5-Dimethylpyrazine synthesis from L-Threonine by reconstructing metabolic pathways and enhancing cofactors regeneration

文献类型: 外文期刊

第一作者: Liu, Xin-Xin

作者: Liu, Xin-Xin;Wang, Yao;Lu, Yun-Feng;Dong, Zi-Xing;Yue, Chao;Li, Dan-Dan;Yao, Lun-Guang;Tang, Cun-Duo;Liu, Xin-Xin;Wang, Yao;Lu, Yun-Feng;Dong, Zi-Xing;Yue, Chao;Li, Dan-Dan;Yao, Lun-Guang;Tang, Cun-Duo;Zhang, Jian-Hui;Tang, Cun-Duo;Huang, Xian-Qing;Tang, Cun-Duo;Zhang, Si-Pu

作者机构:

关键词: 2,5-dimethylpyrazine; Metabolic engineering; Microbial cell factories; Aminoacetone oxidase; Threonine transporter; Whole-cell catalysis

期刊名称:BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS

ISSN:

年卷期: 2024 年 17 卷 1 期

页码:

收录情况: SCI

摘要: 2,5-Dimethylpyrazine (2,5-DMP) is important pharmaceutical raw material and food flavoring agent. Recently, engineering microbes to produce 2,5-DMP has become an attractive alternative to chemical synthesis approach. In this study, metabolic engineering strategies were used to optimize the modified Escherichia coli BL21 (DE3) strain for efficient synthesis of 2,5-DMP using L-threonine dehydrogenase (EcTDH) from Escherichia coli BL21, NADH oxidase (EhNOX) from Enterococcus hirae, aminoacetone oxidase (ScAAO) from Streptococcus cristatus and L-threonine transporter protein (EcSstT) from Escherichia coli BL21, respectively. We further optimized the reaction conditions for synthesizing 2,5-DMP. In optimized conditions, the modified strain can convert L-threonine to obtain 2,5-DMP with a yield of 2897.30 mg/L. Therefore, the strategies used in this study contribute to the development of high-level cell factories for 2,5-DMP.

分类号:

  • 相关文献
作者其他论文 更多>>