Predicting individual apple tree yield using UAV multi-source remote sensing data and ensemble learning
文献类型: 外文期刊
第一作者: Chen, Riqiang
作者: Chen, Riqiang;Zhang, Chengjian;Xu, Bo;Zhu, Yaohui;Zhao, Fa;Han, Shaoyu;Yang, Guijun;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Zhu, Yaohui;Chen, Riqiang;Zhang, Chengjian;Xu, Bo;Zhu, Yaohui;Zhao, Fa;Han, Shaoyu;Yang, Guijun;Yang, Hao;Xu, Bo
作者机构:
关键词: Apple yield -prediction; Unmanned Aerial Vehicle (UAV); Light Detection and Ranging (LiDAR); Multispectral; Ensemble learning
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:6.757; 五年影响因子:6.817 )
ISSN: 0168-1699
年卷期: 2022 年 201 卷
页码:
收录情况: SCI
摘要: As one of the world's most popular fruit, apple tree yield prediction before harvest plays an important role in optimizing orchard nutrition management, especially at the individual tree level. However, few studies focus on fruit-tree yield prediction with remote-sensing technology whereas most of them aim at field crops. Current fruits identifying and counting methods often fail to produce the expected result due to light and occlusion in complex orchard conditions. Since both the spectral and morphological characteristics of tree canopy can reflect the growth and development of fruit trees and are directly related to its potential yield. In this study, we develop a channel for automatic extraction of spectral and morphological features of apple trees using light detection and ranging (LiDAR) and multispectral imagery data from unmanned aerial vehicles. The contribution of spectral and morphological characteristics to the yield prediction of individual apple trees is discussed. With the combination of spectral and morphological features, an ensemble machine learning yield prediction model was developed by combining two widely used basic learners: support vector regression (SVR) and K-nearest neighbor (KNN). Then through extrapolating the ensemble model, the yield map was produced at the orchard level and individual tree level, respectively. The results show that the data processing channels developed in this study can accurately extract the morphological and spectral features of individual apple trees. Three features (Crown Volume 1, Ratio Vegetation Index, and CPA1) contribute most in apple tree yield prediction. The ensemble learning model outperforms all base learners with R2 = 0.813 for the validation and 0.758 for the test when using the selected three features. This study thus provides a practical example of predicting the yield of individual apple trees based on multi-source remote-sensing data and ensemble learning.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture
作者:Charagh, Sidra;Hui, Suozhen;Wang, Jingxin;Zhou, Liang;Xu, Bo;Zhang, Yuanyuan;Sheng, Zhonghua;Tang, Shaoqing;Hu, Shikai;Hu, Peisong;Raza, Ali
关键词:
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Production of grains with ultra-low heavy metal accumulation by pyramiding novel Alleles of OsNramp5 and OsLsi2 in two-line hybrid rice
作者:Hu, Shikai;Zhou, Liang;Wang, Jingxin;Mawia, Amos Musyoki;Hui, Suozhen;Xu, Bo;Jiao, Guiai;Sheng, Zhonghua;Shao, Gaoneng;Wei, Xiangjin;Wang, Ling;Xie, Lihong;Zhao, Fengli;Tang, Shaoqing;Hu, Peisong
关键词:Ultra-low heavy metal accumulation; grain safety; two-line hybrid rice; gene pyramiding; cadmium; arsenic
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response