Deletion of FgAtg27 decreases the pathogenicity of Fusarium graminearum through influence autophagic process

文献类型: 外文期刊

第一作者: Wen, Yong

作者: Wen, Yong;Wang, Mengru;Liu, Xi;Yin, Xiaohui;Yin, Junliang;Gong, Shuangjun

作者机构:

关键词: Autophagy; FgAtg27; Fusarium graminearum

期刊名称:INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES ( 影响因子:8.5; 五年影响因子:8.7 )

ISSN: 0141-8130

年卷期: 2025 年 297 卷

页码:

收录情况: SCI

摘要: Autophagy is a conserved and unique degradation system in eukaryotic cells, which plays crucial roles in the growth, development and pathogenesis of Fungi. Despite that, it is poorly understood in Fusarium graminearum currently. Here, we identified an autophagy gene FgAtg27 from F. graminearum, and investigated its possible roles in regulating morphogenesis and pathogenicity. Results showed that FgAtg27 is homologous to Saccharomyces cerevisiae Atg27 and with an active signal peptide at N-terminal. Then, the Delta FgAtg27 mutant was generated and gene deletion did not change growth and sporulation, whereas significantly decreased pathogenicity. FgAtg27 showed subcellular localization at pre-autophagosomal structure (PAS). After starvation induction, amount of autophagosomes in Delta FgAtg27 was significantly less than wild type and complemented strain, indicating that FgAtg27 deletion affects the autophagosome formation in F. graminearum. Meanwhile, under high Ca2+ concentration conditions, Delta FgAtg27 exhibited slowed growth, confirming that FgAtg27 also involved in F. graminearum's hyperosmotic reaction to Ca2+ concentration stress. In addition, yeast two-hybrid experiments, revealed that FgAtg27 interacts with the autophagy key protein FgAtg9. Collectively, we found that the deletion of FgAtg27 did not impact the growth phenotype of F. graminearum, whereas significantly reduced its pathogenicity and Ca2+ stress through affecting autophagic process.

分类号:

  • 相关文献
作者其他论文 更多>>