DFN-PSAN: Multi-level deep information feature fusion extraction network for interpretable plant disease classification

文献类型: 外文期刊

第一作者: Dai, Guowei

作者: Dai, Guowei;Fan, Jingchao;Tian, Zhimin;Sunil, C. K.;Dewi, Christine;Fan, Jingchao

作者机构:

关键词: Deep learning; Image processing; Feature fusion; Multilevel features; Pixel attention; Disease classification

期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )

ISSN: 0168-1699

年卷期: 2024 年 216 卷

页码:

收录情况: SCI

摘要: Accurate identification of crop diseases is an effective way to promote the development of intelligent and modernized agricultural production, as well as to reduce the use of pesticides and improve crop yield and quality. Deep learning methods have achieved better performance in classifying input plant disease images. However, many plant disease datasets are often constructed from controlled scenarios, and these deep learning models may not perform well when tested in real-world agricultural environments, highlighting the challenges of transitioning to natural farm environments under the new demand paradigm of Agri 4.0. Based on the above reasons, this work proposes using a multi-level deep information feature fusion extraction network (DFN-PSAN) to achieve plant disease classification in natural field environments. DFN-PSAN adopts the YOLOv5 Backbone and Neck network as the base structure DFN and uses pyramidal squeezed attention (PSA) combined with multiple convolutional layers to design a novel classification network PSAN, which fuses and processes the multi-level depth information features output from DFN and highlights the critical regions of plant disease images with the help of pixel-level attention provided by PSA, thus realizing effective classification of multiple fine-grained plant diseases. The proposed DFN-PSAN was trained and tested on three plant disease datasets. The average accuracy and F1-score exceeded 95.27%. The PSA attention mechanism saved 26% of model parameters, achieving a competitive performance among existing related methods. In addition, this work effectively enhances the transparency of the features of the model attention to plant diseases through t-SNE with SHAP interpretable methods.

分类号:

  • 相关文献
作者其他论文 更多>>