Soil Organic Carbon Estimation via Remote Sensing and Machine Learning Techniques: Global Topic Modeling and Research Trend Exploration

文献类型: 外文期刊

第一作者: Li, Tong

作者: Li, Tong;McLaren, Timothy I.;Wang, Weijin;Dalal, Ram C.;Dang, Yash P.;Li, Tong;Liu, Hongdou;Xu, Zhihong;Cui, Lizhen;Wu, Yu;Xia, Anquan;Pandey, Rajiv;Song, Xiufang;Song, Xiufang

作者机构:

关键词: BERTopic; carbon cycle dynamics; carbon sequestration; spectral prediction models

期刊名称:REMOTE SENSING ( 影响因子:4.1; 五年影响因子:4.8 )

ISSN:

年卷期: 2024 年 16 卷 17 期

页码:

收录情况: SCI

摘要: Understanding and monitoring soil organic carbon (SOC) stocks is crucial for ecosystem carbon cycling, services, and addressing global environmental challenges. This study employs the BERTopic model and bibliometric trend analysis exploration to comprehensively analyze global SOC estimates. BERTopic, a topic modeling technique based on BERT (bidirectional encoder representatives from transformers), integrates recent advances in natural language processing. The research analyzed 1761 papers on SOC and remote sensing (RS), in addition to 490 related papers on machine learning (ML) techniques. BERTopic modeling identified nine research themes for SOC estimation using RS, emphasizing spectral prediction models, carbon cycle dynamics, and agricultural impacts on SOC. In contrast, for the literature on RS and ML it identified five thematic clusters: spatial forestry analysis, hyperspectral soil analysis, agricultural deep learning, the multitemporal imaging of farmland SOC, and RS platforms (Sentinel-2 and synthetic aperture radar, SAR). From 1991 to 2023, research on SOC estimation using RS and ML has evolved from basic mapping to topics like carbon sequestration and modeling with Sentinel-2A and big data. In summary, this study traces the historical growth and thematic evolution of SOC research, identifying synergies between RS and ML and focusing on SOC estimation with advanced ML techniques. These findings are critical to global ecosystem SOC assessments and environmental policy formulation.

分类号:

  • 相关文献
作者其他论文 更多>>