Effects of different brush border membrane vesicle isolation protocols on proteomic analysis of Cry1Ac binding proteins from the midgut of Helicoverpa armigera

文献类型: 外文期刊

第一作者: Liang, Ge-Mei

作者: Liang, Ge-Mei;Zhang, Jie;Wu, Kong-Ming;Guo, Yu-Yuan;Rector, Brian G.

作者机构:

关键词: insect resistance

期刊名称:INSECT SCIENCE ( 影响因子:3.262; 五年影响因子:3.206 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Brush border membrane vesicles (BBMV) isolated from insect midguts have been widely used to study Cry1A binding proteins. Sample preparation is important in two-dimensional electrophoresis (2-DE), so to determine a suitable BBMV preparation method in Helicoverpa armigera for 2-DE, we compared three published BBMV preparation methods mostly used in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). All methods yielded similar types and numbers of binding proteins, but in different quantities. The Abdul-Rauf and Ellar protocol was the best of the three, but had limitations. Sufficient protein quantity is important for research involving limited numbers of insects, such as studies of insect resistance to Bacillus thuringiensis in the field. Consequently, we integrated the three BBMV isolation methods into a single protocol that yielded high quantities of BBMV proteins from H. armigera larval midguts, which proved suitable for 2-DE analysis.

分类号: Q96

  • 相关文献

[1]Genetic analysis and pyramiding of two gall midge resistance genes (Gm-2 and Gm-6t) in rice (Oryza sativa L.). Katiyar, S,Verulkar, S,Chandel, G,Zhang, Y,Huang, B,Bennett, J. 2001

[2]Aspects of soybean insect resistance breeding in China. Wang, S. 2004

[3]RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper (Nilaparvata lugens). Xu, XF,Mei, HW,Luo, LJ,Cheng, XN,Li, ZK. 2002

[4]Quantitative Trait Loci for Asian Corn Borer Resistance in Maize Population Mc37 x Zi330. Li Xia,He Kang-lai,Wang Zhen-ying,Bai Shu-xiong,Li Xia. 2010

[5]Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene. Zhang, Junjie,Liu, Fan,Yao, Lei,Yin, Yue,Wang, Guixiang,Zhang, Junjie,Huang, Yubi,Luo, Chen. 2012

[6]Studies on insect resistance of Bt transplastomic plants and the phenotype of their progenies. Zhang, ZL,Chen, X,Qian, KX,Shen, GF. 1999

[7]A novel synthetic Cry1Ab gene resists rice insect pests. Song, F. S.,Song, F. S.,Ni, D. H.,Li, H.,Duan, Y. B.,Yang, Y. C.,Ni, J. L.,Lu, X. Z.,Wei, P. C.,Li, L.,Yang, J. B.,Li, H.,Wei, P. C.. 2014

[8]Expressing a modified cowpea trypsin inhibitor gene to increase insect tolerance against Pieris rapae in Chinese cabbage. Ma, Xiaoli,Pei, Yanxi,Ma, Xiaoli,Zhu, Zhen,Li, Yane,Yang, Guangdong. 2017

[9]Development of insect-resistant transgenic cotton with chimeric TVip3A*accumulating in chloroplasts. Wu, Jiahe,Zhang, Xiangrong,Tian, Yingchuan,Luo, Xiaoli,Shi, Yuejing. 2011

[10]Vacuum infiltration transformation of non-heading Chinese cabbage (Brassica rapa L. ssp chinensis) with the pinII gene and bioassay for diamondback moth resistance. Zhang, Junjie,Liu, Fan,Zhang, Junjie,Huang, Yubi,Yao, Lei,Zhao, Qing,Luo, Chen.

[11]Cross-resistance studies of Cry1Ac-resistant strains of Helicoverpa armigera (Lepidoptera : Noctuidae) to Cry2Ab. Luo, Shudong,Wu, Kongming,Tian, Yan,Liang, Gemei,Feng, Xue,Zhang, Jie,Guo, Yuyuan.

[12]Enhanced yield performance of Bt rice under target-insect attacks: implications for field insect management. Xia, Hui,Lu, Bao-Rong,Xu, Kai,Wang, Wei,Yang, Xiao,Yang, Chao,Ye, Wenli,Luo, Ju,Lai, Fengxiang,Fu, Qiang.

[13]Novel Alleles of Two Tightly Linked Genes Encoding Polygalacturonase-Inhibiting Proteins (VrPGIP1 and VrPGIP2) Associated with the Br Locus That Confer Bruchid (Callosobruchus spp.) Resistance to Mungbean (Vigna radiata) Accession V2709. Kaewwongwal, Anochar,Somta, Prakit,Yimram, Tarika,Srinives, Peerasak,Kaewwongwal, Anochar,Somta, Prakit,Srinives, Peerasak,Chen, Jingbin,Chen, Xin,Kongjaimun, Alisa. 2017

[14]Transgenic tobacco plants expressing synthetic Cry1Ac and Cry1le genes are more toxic to cotton bollworm than those containing one gene. Wang GuoYing,Lian Yun,Jia ZhiWei,Wang BaoMin,He KangLai,Song FuPing.

[15]Cre/lox-mediated Marker Gene Excision in Elite Indica Rice Plants Transformed with Genes Conferring Resistance to Lepidopteran Insects. Chen, SB,Liu, X,Peng, HY,Gong, WK,Wang, R,Wang, F,Zhu, Z.

[16]Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation. Sun, He,Lang, Zhihong,Zhu, Li,Huang, Dafang. 2012

[17]Yield benefit and underlying cost of insect-resistance transgenic rice: Implication in breeding and deploying transgenic crops. Xia, Hui,Chen, Liangyan,Lu, Bao-Rong,Wang, Feng,Chen, Liangyan.

[18]Developing transgenic maize (Zea mays L.) with insect resistance and glyphosate tolerance by fusion gene transformation. Lang Zhi-hong,Lu Wei,Zhu Li,Lin Min,Huang Da-fang,Zhang Jie,He Kang-lai. 2015

[19]Chloroplast-targeted expression of the codon-optimized truncated cry1Ah gene in transgenic tobacco confers a high level of protection against insects. Huang, Dafang,Li, Xiuying,Li, Shengyan,Lang, Zhihong,Zhu, Li,Huang, Dafang,Li, Shengyan,Zhang, Jie. 2013

[20]Generation of selectable marker-free transgenic rice resistant to chewing insects using two co-transformation systems. Yu, Hengxiu,Wang, Ling,Zhao, Zhipeng,Gong, Zhiyun,Tang, Shuzhu,Liu, Qiaoquan,Gu, Minghong,Yao, Quanhong,Zhao, Zhipeng,Wang, Ling. 2009

作者其他论文 更多>>