Genome-Wide Identification of the Eceriferum Gene Family and Analysis of Gene Expression Patterns Under Different Treatments in Pepper (Capsicum annuum L.)
文献类型: 外文期刊
第一作者: Yang, Fan
作者: Yang, Fan;Wei, Kai;Zhang, Ying;Chang, Xiaoke;Yang, Wenrui;Yao, Qiuju;Xiao, Huaijuan
作者机构:
关键词:
pepper;
期刊名称:HORTICULTURAE ( 影响因子:3.0; 五年影响因子:3.2 )
ISSN:
年卷期: 2025 年 11 卷 6 期
页码:
收录情况: SCI
摘要: Plant cuticular wax serves as a critical component for defense against biotic and abiotic stresses, with its biosynthetic pathway regulated by the ECERIFERUM (CER) gene family. This study presents the first genome-wide identification of 79 CER genes (CalCERs) in pepper (Capsicum annuum L.), which are distributed across all 12 chromosomes. Phylogenetic analysis classified CalCERs into five clades, with clade-specific conservation of exon-intron architectures and protein motifs. Promoter cis-element analysis revealed enrichment of light-responsive elements, abscisic acid (ABA), jasmonic acid (JA), and stress-responsive regulatory motifs, indicating multi-pathway regulation. Transcriptomic data highlighted tissue-specific expression patterns, such as the root-predominant express gene CalCER1-2 and the flower-specific express gene CalCER3-1. Under abiotic stresses (drought, salt, heat, and cold), CalCER4-2 and CalCER6-6 responded rapidly, while most genes showed delayed differential expression. Under biotic stress, CalCER3-1 and CalCER5-3 were upregulated, whereas CalCER2-2 exhibited pathogen-specific suppression, suggesting roles in modulating wax-mediated pathogen resistance. Hormone treatments revealed dynamic responses: CalCER2-2 was persistently ABA-inducible, while CalCER3-1 specifically responded to JA. This study underscores evolutionary conservation and species-specific expansion of the pepper CER family, linking their expression to wax biosynthesis and stress adaptation. These insights provide a foundation for enhancing stress resilience in crops. Future work should employ gene editing and metabolomics to validate functional mechanisms and optimize breeding strategies.
分类号:
- 相关文献
作者其他论文 更多>>
-
Perillaldehyde controls citrus green mold by inhibiting the ribosome biogenesis of Penicillium digitatum and improving citrus disease resistance
作者:Liu, Shuqi;Jiang, Yuxin;Yang, Fan;Wang, Yuqing;Lu, Yongqing;Lai, Weiqiang;Long, Chao-an;Sun, Jiancheng;Yang, Fan;Long, Chao-an;Long, Chao-an
关键词:Perillaldehyde; Penicillium digitatum; Citrus; Green mold; ROS
-
Bioenhanced remediation of dibutyl phthalate contaminated black soil by immobilized biochar microbiota
作者:Tao, Yue;Wang, Yao;Cui, Yunhe;Sun, Rui;Zhang, Bo;Qu, Jianhua;Zhang, Ying;Cai, Hongguang
关键词:Biochar; DBP; Microbial remediation; Black soil; Soil nutrient
-
Simultaneous profiling of chromatin-associated RNA at targeted DNA loci and RNA-RNA Interactions through TaDRIM-seq
作者:Ding, Cheng;Chen, Guoting;Luan, Shiping;Gao, Runxin;Fan, Yudong;Zhang, Ying;Wang, Xiaoting;Li, Guoliang;Foda, Mohamed F.;Yan, Jiapei;Li, Xingwang;Chen, Guoting;Li, Guoliang;Chen, Guoting;Li, Guoliang;Foda, Mohamed F.;Li, Xingwang;Li, Xingwang
关键词:
-
Innovative far-infrared radiation assisted pulsed vacuum freeze-drying of banana slices: Drying behaviors, physicochemical properties and microstructural evolution
作者:Xu, Ming-Qiang;Ha, Bu-Er;Yang, Fan;Jiang, Yu-Hao;Zhang, An-An;Lv, Weiqiao;Xiao, Hong-Wei;Xu, Ming-Qiang;Vidyarthi, Sriram K.;Zhang, Feng-Lun
关键词:Far-infrared radiation assisted pulsed vacuum; freeze-drying; Banana slices; Drying behavior; Physicochemical properties; Microstructural evolution
-
Special expression of alanine-aminotransferase1 (OsAlaAT1) improves nitrogen utilization in wheat
作者:Jiao, Bo;Wang, Jiao;Dong, Fushuang;Yang, Fan;Liu, Yongwei;Sun, Lei;Chai, Jianfang;Zhou, Shuo
关键词:
-
Enhanced removal of tetracycline from water using MgO-modified g-C3N4 composite: Synthesis optimization and mechanism investigation
作者:Yu, Hui;Gao, Longfei;Zhang, Xinyuan;Zhang, Shuang;Chi, Wenshi;Zhang, Long;Li, Jianzhuo;Tian, Yushi;Zhang, Ying;Cai, Hongguang
关键词:Heterojunction; Photocatalysis; Tetracycline degradation; Wastewater treatment
-
Long-term warming and acidification interaction drives plastic acclimation in the diatom Pseudo-nitzschia multiseries
作者:Sun, Yanmin;Zhang, Yanan;Liang, Chengwei;Ye, Naihao;Li, Fang;Sun, Yanmin;Yang, Fan;Xu, Dong;Zhang, Yanan;Liang, Chengwei;Huang, Xintong;Wang, Bingkun;Wang, Yapeng;Sun, Haoming;Ye, Naihao;Duan, Ran;Fu, Fei-Xue;Wang, Zhuonan
关键词: