Genome-Wide Identification of the Eceriferum Gene Family and Analysis of Gene Expression Patterns Under Different Treatments in Pepper (Capsicum annuum L.)

文献类型: 外文期刊

第一作者: Yang, Fan

作者: Yang, Fan;Wei, Kai;Zhang, Ying;Chang, Xiaoke;Yang, Wenrui;Yao, Qiuju;Xiao, Huaijuan

作者机构:

关键词: pepper; Capsicum annuum L.; Eceriferum gene; expression pattern

期刊名称:HORTICULTURAE ( 影响因子:3.0; 五年影响因子:3.2 )

ISSN:

年卷期: 2025 年 11 卷 6 期

页码:

收录情况: SCI

摘要: Plant cuticular wax serves as a critical component for defense against biotic and abiotic stresses, with its biosynthetic pathway regulated by the ECERIFERUM (CER) gene family. This study presents the first genome-wide identification of 79 CER genes (CalCERs) in pepper (Capsicum annuum L.), which are distributed across all 12 chromosomes. Phylogenetic analysis classified CalCERs into five clades, with clade-specific conservation of exon-intron architectures and protein motifs. Promoter cis-element analysis revealed enrichment of light-responsive elements, abscisic acid (ABA), jasmonic acid (JA), and stress-responsive regulatory motifs, indicating multi-pathway regulation. Transcriptomic data highlighted tissue-specific expression patterns, such as the root-predominant express gene CalCER1-2 and the flower-specific express gene CalCER3-1. Under abiotic stresses (drought, salt, heat, and cold), CalCER4-2 and CalCER6-6 responded rapidly, while most genes showed delayed differential expression. Under biotic stress, CalCER3-1 and CalCER5-3 were upregulated, whereas CalCER2-2 exhibited pathogen-specific suppression, suggesting roles in modulating wax-mediated pathogen resistance. Hormone treatments revealed dynamic responses: CalCER2-2 was persistently ABA-inducible, while CalCER3-1 specifically responded to JA. This study underscores evolutionary conservation and species-specific expansion of the pepper CER family, linking their expression to wax biosynthesis and stress adaptation. These insights provide a foundation for enhancing stress resilience in crops. Future work should employ gene editing and metabolomics to validate functional mechanisms and optimize breeding strategies.

分类号:

  • 相关文献
作者其他论文 更多>>