Lactiplantibacillus plantarum LPJZ-658 Improves Non-Alcoholic Steatohepatitis by Modulating Bile Acid Metabolism and Gut Microbiota in Mice

文献类型: 外文期刊

第一作者: Liu, Liming

作者: Liu, Liming;Li, Chunhua;Lu, Yuting;Zhao, Cuiqing;Deng, Liquan;Wei, Wei;Bai, Jieying;Li, Letian;Jin, Ningyi;Li, Chang;Zhang, Heping

作者机构:

关键词: Lactiplantibacillus plantarum LPJZ-658; non-alcoholic steatohepatitis; bile acids; gut microbiota

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.6; 五年影响因子:6.2 )

ISSN: 1661-6596

年卷期: 2023 年 24 卷 18 期

页码:

收录情况: SCI

摘要: Non-alcoholic steatohepatitis (NASH) is one of the most prevalent diseases worldwide; it is characterized by hepatic lipid accumulation, inflammation, and progressive fibrosis. Here, a Western diet combined with low-dose weekly carbon tetrachloride was fed to C57BL/6J mice for 12 weeks to build a NASH model to investigate the attenuating effects and possible mechanisms of Lactiplantibacillus plantarum LPJZ-658. Hepatic pathology, lipid profiles, and gene expression were assessed. The metabolomic profiling of the serum was performed. The composition structure of gut microbiota was profiled using 16s rRNA sequencing. The results show that LPJZ-658 treatment significantly attenuated liver injury, steatosis, fibrosis, and inflammation in NASH mice. Metabolic pathway analysis revealed that several pathways, such as purine metabolism, glycerophospholipid metabolism, linoleic acid metabolism, and primary bile acid biosynthesis, were associated with NASH. Notably, we found that treatment with LPJZ-658 regulated the levels of bile acids (BAs) in the serum. Moreover, LPJZ-658 restored NASH-induced gut microbiota dysbiosis. The correlation analysis deduced obvious interactions between BAs and gut microbiota. The current study indicates that LPJZ-658 supplementation protects against NASH progression, which is accompanied by alternating BA metabolic and modulating gut microbiota.

分类号:

  • 相关文献
作者其他论文 更多>>