Chickpea-Derived Modified Antimicrobial Peptides KTA and KTR Inactivate Staphylococcus aureus via Disrupting Cell Membrane and Interfering with Peptidoglycan Synthesis

文献类型: 外文期刊

第一作者: Zhang, Xinhui

作者: Zhang, Xinhui;Ma, Peipei;Ismail, Balarabe B.;Yang, Zhehao;Zou, Zhipeng;Ye, Xingqian;Liu, Donghong;Guo, Mingming;Suo, Yujuan

作者机构:

关键词: antimicrobial peptides; Staphylococcus aureus; cell membrane damage; peptidoglycan; antimicrobial mechanism; foodborne pathogen control

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:6.1; 五年影响因子:6.3 )

ISSN: 0021-8561

年卷期: 2024 年 72 卷 5 期

页码:

收录情况: SCI

摘要: The widespread bacterial contamination caused by foodborne pathogens has continuously driven the development of advanced and potent food antimicrobial agents. In this study, two novel antimicrobial peptides (AMPs) named KTA and KTR were obtained by modifying a natural AMP, Leg2, from chickpea storage protein legumin hydrolysates. They were further predicted to be stable hydrophobic cationic AMPs of alpha-helical structure with no hemolytic toxicity by several online servers. Moreover, the AMPs exerted superior antibacterial activity against two representative Staphylococcus aureus strains thanks to the increased hydrophobicity and positive charge, with minimum inhibition concentration value (4.74-7.41 mu M) significantly lower than that of Leg2 (>1158.70 mu M). Further, this study sought to elucidate the specific antimicrobial mechanism against Gram-positive bacteria. It was found that the electrostatic interactions of the AMPs with peptidoglycan were vital for peptide activity in combating Gram-positive bacteria. Subsequently, the cell membrane of S. aureus cells was irreversibly disrupted by increasing permeability and impairing membrane components, which led to the massive release of intracellular substances and eventual cell death. Overall, this work demonstrated that KTA and KTR were active against Gram-positive bacteria via peptidoglycan targeting and membrane-disruptive mechanisms and paved the way for expanding their application potential to alleviate food contamination.

分类号:

  • 相关文献
作者其他论文 更多>>