Greenhouse gas emissions and mitigation in rice agriculture

文献类型: 外文期刊

第一作者: Qian, Haoyu

作者: Qian, Haoyu;Zhu, Xiangchen;Li, Ganghua;Liu, Zhenhui;Wang, Songhan;Ding, Yanfeng;Jiang, Yu;Qian, Haoyu;Zhu, Xiangchen;Li, Ganghua;Liu, Zhenhui;Wang, Songhan;Ding, Yanfeng;Jiang, Yu;Zhu, Xiangchen;Huang, Shan;Huang, Shan;Linquist, Bruce;Kuzyakov, Yakov;Kuzyakov, Yakov;Kuzyakov, Yakov;Wassmann, Reiner;Sander, Bjoern Ole;Wassmann, Reiner;Minamikawa, Kazunori;Martinez-Eixarch, Maite;Yan, Xiaoyuan;Zhou, Feng;Zhang, Weijian;Shang, Ziyin;Zou, Jianwen;Zheng, Xunhua;van Groenigen, Kees Jan

作者机构:

期刊名称:NATURE REVIEWS EARTH & ENVIRONMENT ( 影响因子:42.1; 五年影响因子:42.1 )

ISSN:

年卷期: 2023 年 4 卷 10 期

页码:

收录情况: SCI

摘要: Rice paddies supply half the global population with staple food, but also account for similar to 48% of greenhouse gas (GHG) emissions from croplands. In this Review, we outline the characteristics of GHG emissions (CH4 and N2O) from paddy soils, focusing on climate change effects and mitigation strategies. Global mean annual area-scaled and yield-scaled GHG emissions are similar to 7,870 kg CO(2)e ha(-1) and 0.9 kg CO(2)e kg(-1), respectively, with 94% from CH4. However, emissions vary markedly, primarily reflecting the impact of management practices. In particular, organic matter additions and continuous flooding of paddies both stimulate CH4 emissions, whereas fertilizer N application rate is the most important driver of N2O emissions. Although contemporary changes in emissions are uncertain, future elevated [CO2] and warming are projected to increase CH4 emissions by 4-40% and 15-23%, respectively. Yet, integrated agronomic management strategies - including cultivar, organic matter, water, tillage and nitrogen management - offer GHG mitigation potential. In particular, new rice variety selection, non-continuous flooding and straw removal strategies reduce GHG emissions by 24%, 44% and 46% on average, respectively. However, approaches need to be optimized on the basis of seasonal CH4 emission patterns, necessitating improved quantification and reduced uncertainty in regional and global GHG estimates, especially in low latitudes.

分类号:

  • 相关文献
作者其他论文 更多>>