OSNRT1.1B-OSCNGC14/16-CA2+-OSNLP3 Pathway: Phosphorylation-Mediated Maintenance of Nitrogen Homeostasis

文献类型: 外文期刊

第一作者: Wang, Xiaohan

作者: Wang, Xiaohan;Liu, Yongqiang;Li, Weiwei;Wang, Yiqin;Chu, Chengcai;Liu, Yongqiang;Ma, Xiaojun;Wang, Wei;Jiang, Zhimin;Hu, Bin;Chu, Chengcai;Ma, Xiaojun;Wang, Wei;Jiang, Zhimin;Hu, Bin;Chu, Chengcai;Li, Weiwei;Ma, Xiaojun;Wang, Wei;Jiang, Zhimin;Hu, Bin;Chu, Chengcai;Li, Legong

作者机构:

关键词: Ca2(+) signaling; nitrate Signaling; nitrogen homeostasis; phosphorylation; rice

期刊名称:ADVANCED SCIENCE ( 影响因子:14.1; 五年影响因子:15.6 )

ISSN:

年卷期: 2025 年

页码:

收录情况: SCI

摘要: Nitrate, a crucial nutrient and signaling molecule, is extensively studied across plants. While the NRT1.1-NLP-centered pathway dominates nitrate signaling in Arabidopsis and rice, however, whether there is functional interaction or co-regulation between the primary nitrate response (PNR) and long-term nitrogen utilization remains unclear. Here, a novel nitrate signaling pathway is identified in rice that works alongside the established ubiquitination-mediated OsNRT1.1B-OsSPX4-OsNLP3 cascade. It is demonstrated that OsCNGC14, OsCNGC16, and OsNRT1.1B form a plasma membrane-localized complex in root tips, mediating nitrate-triggered Ca2(+) influx. The absence of either OsCNGC14 or OsCNGC16 abolished Ca2(+) signaling and suppressed PNR. The OsNRT1.1B-OsCNGC14/16 complex activates Ca2(+)-dependent phosphorylation of OsNLP3 at Ser193, which accelerates its nuclear translocation and transcriptional activation of nitrate-responsive genes. This phosphorylation enhances both short-term PNR and long-term nitrogenutilization. This findings reveal a dual regulatory network in rice: the Ca2(+)-OsNLP3 pathway rapidly amplifies nitrate signals, while the ubiquitination-mediated OsSPX4 degradation ensures sustained nitrogen homeostasis.

分类号:

  • 相关文献
作者其他论文 更多>>