Rutin Attenuates Oxidative Stress Responses and Hepatocyte Metabolomics in β-Hydroxybutyric Acid-Induced Hepatocyte Injury in Calves

文献类型: 外文期刊

第一作者: Yang, Kun

作者: Yang, Kun;Zhao, Haixia;Li, Dabiao;Yang, Kun;Zhao, Haixia;Gao, Min;Hu, Honglian

作者机构:

关键词: rutin; metabolomics; BHBA; oxidative stress

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:4.9; 五年影响因子:5.7 )

ISSN: 1661-6596

年卷期: 2025 年 26 卷 12 期

页码:

收录情况: SCI

摘要: : Negative energy balance (NEB) in dairy cows induces excessive lipolysis, leading to elevated levels of beta-hydroxybutyric acid (BHBA), which, when accumulated, can cause liver damage. Rutin (RT), a natural flavonoid with antioxidant and anti-inflammatory properties, has demonstrated potential hepatoprotective effects; however, its ability to mitigate BHBA-induced hepatocellular injury in calves remains unclear. This study first assessed the impact of various BHBA concentrations on oxidative stress in calf hepatocytes, then explored the protective effects and underlying mechanisms of RT, and finally employed untargeted metabolomics to further elucidate RT's mode of action. The results showed that exposure to 1.2 mM BHBA significantly increased malondialdehyde (MDA), nitric oxide (NO) contents, and reactive oxygen species (ROS) levels, while markedly decreasing glutathione (GSH) content and catalase (CAT) activity compared with the blank control. Notably, pretreatment with 100 mu g/mL RT resulted in the greatest increase in GSH contents (180%) compared to BHBA treatment alone, while 150 mu g/mL RT led to the most pronounced reduction in MDA contents (220%). Furthermore, BHBA treatment significantly upregulated the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), and heme oxygenase-1 (HO-1) at both the mRNA and protein levels. These alterations were effectively reversed by pretreatment with 100 mu g/mL RT. Non-targeted metabolomics identified 1525 metabolites in total. Based on OPLS-DA, metabolites with a variable importance in projection (VIP) > 1 and p < 0.05 were considered significantly altered. Compared with the blank control, BHBA treatment upregulated 47 metabolites-including 8-hydroxy-2 '-deoxyguanosine, 3-hydroxyisovaleric acid, and N-palmitoyl-sphingosine-and downregulated 58 metabolites, such as betaine, linolenic acid, and arachidonic acid. In contrast, RT pretreatment upregulated 207 metabolites relative to the BHBA treatment, including linolenic acid, taurocholic acid, and 4-hydroxybenzoic acid, and downregulated 126 metabolites, including 3-hydroxyisovaleric acid, 8-hydroxy-2 '-deoxyguanosine, and pyruvaldehyde. Pathway enrichment analysis indicated that RT alleviated BHBA-induced hepatocyte injury primarily by modulating the fatty acid degradation pathway. In summary, RT mitigated BHBA-induced oxidative stress in calf hepatocytes by regulating the Keap1/Nrf2 signaling pathway and further exerted protective effects through metabolic reprogramming.

分类号:

  • 相关文献
作者其他论文 更多>>