High-Resolution Ratoon Rice Monitoring under Cloudy Conditions with Fused Time-Series Optical Dataset and Threshold Model

文献类型: 外文期刊

第一作者: Zhao, Rongkun

作者: Zhao, Rongkun;Wang, Yue;Li, Yuechen;Zhao, Rongkun;Li, Yuechen

作者机构:

关键词: ratoon rice; cloudy and rainy regions; flexible spatiotemporal data fusion; threshold model

期刊名称:REMOTE SENSING ( 影响因子:5.0; 五年影响因子:5.6 )

ISSN:

年卷期: 2023 年 15 卷 17 期

页码:

收录情况: SCI

摘要: Ratoon rice, an effective rice cultivation system, allows paddy rice to be harvested twice from the same stubble, playing an important role in ensuring food security and adapting to climate change with its unique growth characteristics. However, there is an absence of research related to remote-sensing monitoring of ratoon rice, and the presence of other rice cropping systems (e.g., double-season rice) with similar characteristics poses a hindrance to the accurate identification of ratoon rice. Furthermore, cloudy and rainy regions have limited available remote-sensing images, meaning that remote-sensing monitoring is limited. To address this issue, taking Yongchuan District, a typical cloud-prone region in Chongqing, China, as an example, this study proposed the construction of a time-series optical dataset using the Modified Neighborhood Similar Pixel Interpolator (MNSPI) method for cloud-removal interpolation and the Flexible Spatiotemporal DAta Fusion (FSDAF) model for fusing multi-source optical remote-sensing data, in combination with vegetation index features and phenological information to build a threshold model to map ratoon rice at high-resolution (10 m). The mapping performance of ratoon rice was evaluated using independent field samples to obtain the overall accuracy and kappa coefficient. The findings indicate that the combination of the MNSPI method and FSDAF model had a stable and effective performance, characterized by high correlation coefficient (r) values and low root mean square error (RMSE) values between the restored/predicted images and the true images. Notably, it was possible to effectively capture the distinct characteristics of ratoon rice in cloudy and rainy regions using the proposed threshold model. Specifically, the identified area of ratoon rice in the study region was 194.17 km2, which was close to the official data (158-180 km2), and the overall accuracy and kappa coefficient of ratoon rice identification result were 90.73% and 0.81, respectively. These results demonstrate that our proposed threshold model can effectively distinguish ratoon rice during vital phenological stages from other crop types, enrich the technical system of rice remote-sensing monitoring, and provide a reference for agricultural remote-sensing applications in cloudy and rainy regions.

分类号:

  • 相关文献
作者其他论文 更多>>