Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Li, ZF

作者: Li, ZF;Wan, JM;Xia, JF;Yano, M

作者机构:

关键词: Rice;Physico-chemical property;Quantitative trait loci;Environment;Waxy gene-expression;Amylose content;Eating quality;Endosperm;Population;Varieties;Alkali

期刊名称:BREEDING SCIENCE ( 影响因子:2.086; 五年影响因子:2.632 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Backcross inbred lines (BILs) derived from a cross of Nipponbare (japonica) / Kasalath (indica) // Nipponbare were used to identify quantitative trait loci (QTLs) controlling physico-chemical properties of rice grains such as amylose content (AC), alkali spreading score (ASS) and gel consistency (GC) by composite interval mapping over a period of two years. A total of 4 QTLs for AC were detected; qAC-5 and qAC-6 showed significant effects (hereafter referred to as "significant") in both years, and qAC-6 explained more than 80% of the phenotypic variance and was located in the wx region on the short arm of chromosome 6. The other 2 QTLs for AC with small additive effects were detected and were significant only in one year. Three QTLs for ASS were identified; qASS-6a and qASS-6b were significant in both years, and qASS-6a corresponded to a major gene located in the alk region on chromosome 6, while qASS-3 on chromosome 3 was significant only in one year. Five QTLs for GC were detected and all were significant only in one year. The lock of detection of major gene(s) for GC may be due to the fact that none of the parents were differentiated in terms of GC. These results showed that AC and ASS were mainly controlled by known gene loci, i.e., wx and alk, respectively, with modification by minor genes. [References: 28]

分类号: S3

  • 相关文献

[1]Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wx(b) supercript stop pre-mRNAs in rice (Oryza sativa L.). Zeng, Dali,Yan, Meixian,Wang, Yonghong,Liu, Xinfang,Qian, Qian,Li, Jiayang.

[2]Seed traits evaluation from long-term selection of kernel oil concentration in a high-oil maize population KYHO. Wang Hong-Wu,Hu Hai-Xiao,Song Tong-Ming,Chen Shao-Jiang,Wang Hong-Wu. 2012

[3]Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu. Dai, LY,Lin, XH,Ye, CR,Ise, KZ,Saito, K,Kato, A,Xu, FR,Yu, TQ,Zhang, DP.

[4]The rice gene OsZFP6 functions in multiple stress tolerance responses in yeast and Arabidopsis. Guan, Qing-jie,Bu, Qing-yun,Wang, Zhen-yu,Wang, Li-feng,Guan, Qing-jie.

[5]Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Wang, Jiankang,Wan, Xiangyuan,Li, Huihui,Pfeiffer, Wolfgang H.,Crouch, Jonathan,Wan, Jianmin.

[6]Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping. Fu, Ying,Zhang, Dongqing,Zhang, Yaofeng,Lin, Baogang,Hua, Shuijin,Ding, Houdong,Yu, Huasheng,Li, Jiana,Qian, Wei,Gleeson, Madeleine,Frauen, Martin.

[7]Genetic Improvement of Japonica Rice Variety Wuyujing 3 for Stripe Disease Resistance and Eating Quality by Pyramiding Stv-b(i) and Wx-mq. Chen Tao,Wu Hao,Zhang Ya-dong,Zhu Zhen,Zhao Qi-yong,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xin,Zhao Chun-fang,Wang Cai-lin,Chen Tao. 2016

[8]Association analysis of physicochemical traits on eating quality in rice (Oryza sativa L.). Zhao, Wei-Guo,Kwon, Soon-Wook,Park, Yong-Jin,Zhao, Wei-Guo,Chung, Jong-Wook,Ma, Kyung-Ho,Kwon, Soon-Wook,Park, Yong-Jin,Lee, Jeong-Heui. 2013

[9]Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Zhang, Hua,Xu, Heng,Feng, Mengjie,Zhu, Ying. 2018

[10]Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight. Luo, Yanchang,Yin, Zhongchao,Zakaria, Sabaruddin,Basyah, Bakhtiar,Luo, Yanchang,Ma, Tingchen,Li, Zefu,Yang, Jianbo,Yin, Zhongchao. 2014

[11]OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. Wang, Jie-Chen,Cai, Xiu-Ling,Xu, Heng,Zhu, Ying,Liu, Qiao-Quan. 2013

[12]Determination of Amylose Content and Its Relationship with RVA Profile Within Genetically Similar Cultivars of Rice (Oryza sativa L. ssp japonica). Wang Xin-qi,Yin Lin-qing,Shen Ge-zhi,Xu Li,Liu Qiao-quan. 2010

[13]In vitro measurement of resistant starch of cooked milled rice and physico-cheMical characteristics affecting its formation. Zhang, Wenwei,Bi, Jingcui,Yan, Xiaoyan,Wang, Hailian,Zhu, Changlan,Wang, Hankang,Wan, Jianmin. 2007

[14]Rapid prediction of acid detergent fiber, neutral detergent fiber, and acid detergent lignin of rice materials by near-infrared spectroscopy. Kong, XL,Xie, JK,Wu, XL,Huang, YJ,Bao, JS.

[15]Control of Rice Embryo Development, Shoot Apical Meristem Maintenance, and Grain Yield by a Novel Cytochrome P450. Yang, Weibing,Gao, Mingjun,Yin, Xin,Zeng, Longjun,Li, Qun,He, Zuhua,Yang, Weibing,Gao, Mingjun,Yin, Xin,Zeng, Longjun,Li, Qun,He, Zuhua,Liu, Jiyun,Wang, Junmin,Zhang, Xiaoming,Xu, Yonghan,Zhang, Shubiao.

[16]A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Jin, QS,Waters, D,Cordeiro, GM,Henry, RJ,Reinke, RF.

[17]Characterization of high-yield performance as affected by genotype and environment in rice. Chen, Song,Zeng, Fang-rong,Zhang, Guo-ping,Pao, Zong-zhi. 2008

[18]Analysis of genotypic and environmental effects on rice starch. 1. Apparent amylose content, pasting viscosity, and gel texture. Bao, JS,Kong, XL,Xie, JK,Xu, LJ. 2004

[19]Effect of Environment and Genetic Recombination on Subspecies and Economic Trait Differentiation in the F-2 and F-3 Generations from indica-japonica Hybridization. Wang He-tong,Jin Feng,Xu Hai,Cheng Ling,Xia Ying-jun,Liu Chun-xiang,Chen Wen-fu,Xu Zheng-jin,Jiang Yi-jun,Lin Qing-shan. 2014

[20]Impact of livestock Scale on Rice Production in Battambang of Cambodia. Siek, D.,Xu, S. W.,Yu, W.,Ahmed, A-G,Siek, D.. 2017

作者其他论文 更多>>