Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025

文献类型: 外文期刊

第一作者: Kui, Hong

作者: Kui, Hong;Luo, Huiying;Shi, Pengjun;Bai, Yingguo;Yuan, Tiezheng;Wang, Yaru;Yang, Peilong;Yao, Bin;Kui, Hong;Dong, Shouliang

作者机构:

关键词: Glycoside hydrolase (GH) family 11;Nesterenkonia xinjiangensis;Thermostability;Xylanase

期刊名称:APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY ( 影响因子:2.926; 五年影响因子:2.685 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: An endo-β-1,4-xylanase-encoding gene, xyn11NX, was cloned from Nesterenkonia xinjiangensis CCTCC AA001025 and expressed in Escherichia coli. The gene encoded a 192-amino acid polypeptide and a putative 50-amino acid signal peptide. The deduced amino acid sequence exhibited a high degree of similarity with the xylanases from Streptomyces thermocyaneoviolaceus (68%) and Thermobifida fusca (66%) belonging to glycoside hydrolase family 11. After purification to homogeneity, the recombinant Xyn11NX exhibited optimal activity at pH 7.0 and 55 °C and remained stable at weakly acidic to alkaline pH (pH 5.0-11.0). The enzyme was thermostable, retaining more than 80% of the initial activity after incubation at 60 °C for 1 h and more than 40% of the activity at 90 °C for 15 min. The K _m and V _(max) values for oat spelt xylan and birchwood xylan were 16.08 mg ml~(-1) and 45.66 μmol min~(-1) mg~(-1) and 9.22 mg ml~(-1) and 16.05 μmol min~(-1) mg~(-1), respectively. The predominant hydrolysis products were xylobiose and xylotriose when using oat spelt xylan or birchwood xylan as substrate.

分类号: Q5

  • 相关文献

[1]An acid and highly thermostable xylanase from Phialophora sp G5. Zhang, Fan,Shi, Pengjun,Bai, Yingguo,Luo, Huiying,Yuan, Tiezheng,Huang, Huoqing,Yang, Peilong,Yao, Bin,Zhang, Fan,Miao, Lihong. 2011

[2]The disruption of two salt bridges of the cold-active xylanase XynGR40 results in an increase in activity, but a decrease in thermostability. Wang, Guozeng,Wu, Jingjing,Lin, Juan,Ye, Xiuyun,Yao, Bin.

[3]A novel, alkali-tolerant thermostable xylanase from Saccharomonospora viridis: direct gene cloning, expression and enzyme characterization. Wang, Ziyuan,Jin, Yi,Wu, Huijun,Xie, Xiangming,Tian, Zhaofeng,Wu, Yuying.

[4]Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis. Zheng, Hongchen,Liu, Yihan,Han, Yang,Lu, Fuping,Zheng, Hongchen,Liu, Yihan,Sun, Mingzhe,Han, Yang,Wang, Jianling,Lu, Fuping,Zheng, Hongchen,Sun, Junshe,Liu, Yihan,Wang, Jianling,Sun, Mingzhe,Lu, Fuping.

[5]A two-step discriminated method to identify thermophilic proteins. Tang, Hua,Cao, Ren-Zhi,Wang, Wen,Liu, Tie-Shan,Wang, Li-Ming,He, Chun-Mei. 2017

[6]Purification and characterization of a psychrophilic catalase from Antarctic Bacillus. Wang, Wei,Sun, Mi,Zhang, Bin,Liu, Wanshun. 2008

[7]An intramolecular disulfide bond is required for the thermostability of methyl parathion hydrolase, OPHC2. Chu, Xiao-yu,Tian, Jian,Wu, Ning-feng,Fan, Yun-liu.

[8]Heterologous expression of a gene encoding a thermostable beta-galactosidase from Alicyclobacillus acidocaldarius. Yuan, Tiezheng,Yang, Peilong,Wang, Yaru,Meng, Kun,Luo, Huiying,Yao, Bin,Zhang, Wei,Wu, Ningfeng,Fan, Yunliu.

[9]Structure-Based Design of Mucor pusillus Pepsin for the Improved Ratio of Clotting Activity/Proteolytic Activity in Cheese Manufacture. Zhang, Jie,Sun, Yonghai,Luo, Quan,Zhang, Jie,Li, Zhuolin,Li, Tiezhu,Wang, Tuoyi.

[10]Genetic and biochemical characterization of a protease-resistant mesophilic beta-mannanase from Streptomyces sp S27. Shi, Pengjun,Yuan, Tiezheng,Zhao, Junqi,Huang, Huoqing,Luo, Huiying,Meng, Kun,Wang, Yaru,Yao, Bin.

[11]IMPROVEMENT ON THE THERMOSTABILITY AND ACTIVITY OF APX1 FROM ENERGY PLANT JATROPHA CURCAS L. BY HYPER-ACIDIC FUSION PARTNERS. Zhang, Mengru,Yang, Yumei,Li, Xujuan,Wang, Haibo,Yang, Shuanglong,Wang, Shasha,Gong, Ming,Zou, Zhurong,Li, Xujuan,Wang, Haibo. 2014

[12]A novel thermophilic endo-beta-1,4-mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Lu, Haiqiang,Luo, Huiying,Shi, Pengjun,Huang, Huoqing,Meng, Kun,Yang, Peilong,Yao, Bin. 2014

[13]Structural Insights into the Thermophilic Adaption Mechanism of Endo-1,4-beta-Xylanase from Caldicellulosiruptor owensensis. Liu, Xin,Xin, Fengjiao,Wen, Boting,Gu, Tianyi,Wang, Fengzhong,Sun, Lichao,Liu, Tengfei,Shi, Xinyuan,Zhang, Yuebin,Mi, Shuofu. 2018

[14]Concurrent mutations in six amino acids in beta-glucuronidase improve its thermostability. Xiong, Ai-Sheng,Peng, Ri-He,Cheng, Zong-Ming,Li, Yi,Liu, Jin-Ge,Zhuang, Jing,Gao, Feng,Xu, Fang,Qiao, Yu-Shan,Zhang, Zhen,Chen, Jian-Min,Yao, Quan-Hong. 2007

[15]Two neutral thermostable cellulases from Phialophora sp G5 act synergistically in the hydrolysis of filter paper. Zhao, Junqi,Shi, Pengjun,Li, Zhongyuan,Yang, Peilong,Luo, Huiying,Bai, Yingguo,Wang, Yaru,Yao, Bin. 2012

[16]Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp M231 using a computationally aided method. Tian, Jian,Wang, Ping,Huang, Lu,Chu, Xiaoyu,Wu, Ningfeng,Fan, Yunliu. 2013

[17]Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Wang, Yawei,Fu, Zheng,Xiong, Hairong,Wang, Yawei,Fu, Zheng,Huang, Huoqing,Yao, Bin,Zhang, Huashan,Turunen, Ossi.

[18]High efficiency and throughput system in directed evolution in vitro of reporter gene. Xiong, Ai-Sheng,Peng, Ri-He,Liu, Jin-Ge,Zhuang, Jing,Qiao, Yu-Shan,Xu, Fang,Cai, Bing,Zhang, Zhen,Chen, Jian-Min,Yao, Quan-Hong.

[19]A novel thermoacidophilic and thermostable endo-beta-1,4-glucanase from Phialophora sp G5: its thermostability influenced by a distinct beta-sheet and the carbohydrate-binding module. Zhao, Junqi,Shi, Pengjun,Huang, Huoqing,Li, Zhongyuan,Yuan, Tiezheng,Yang, Peilong,Luo, Huiying,Bai, Yingguo,Yao, Bin. 2012

[20]Purification and biochemical characterization of a cyclodextrin glycosyltransferase from Geobacillus thermoglucosidans CHB1. Jia, Xianbo,Vasseur, Liette,You, Minsheng,Jia, Xianbo,Ye, Xuejun,Chen, Jichen,Lin, Xinjian,Vasseur, Liette. 2018

作者其他论文 更多>>