Genome-Wide Identification and Expression Analysis Under Abiotic Stress of the Lipoxygenase Gene Family in Maize (Zea mays)

文献类型: 外文期刊

第一作者: Li, Sinan

作者: Li, Sinan;Hou, Shuai;Sun, Yuanqing;Sun, Minghao;Sun, Yan;Li, Xin;Li, Yunlong;Wang, Luyao;Cai, Quan;Guo, Baitao;Zhang, Jianguo

作者机构:

关键词: maize; LOX; abiotic stress; gene family; expression analysis

期刊名称:GENES ( 影响因子:2.8; 五年影响因子:3.2 )

ISSN:

年卷期: 2025 年 16 卷 1 期

页码:

收录情况: SCI

摘要: Background/Objectives: Abiotic stresses impose significant constraints on crop growth, development, and yield. However, the comprehensive characterization of the maize (Zea mays) lipoxygenase (LOX) gene family under stress conditions remains limited. LOXs play vital roles in plant stress responses by mediating lipid oxidation and signaling pathways. Methods: In this study, 13 ZmLOX genes were identified in maize and characterized to explore their functions under abiotic stresses. Results: Phylogenetics revealed that ZmLOX genes share evolutionary origins with LOX genes in Arabidopsis and rice. Promoter analysis identified cis-acting elements associated with growth, light response, hormone signaling, and stress response, indicating their diverse biological roles. Gene Ontology (GO) and KEGG enrichment analyses showed that ZmLOX genes are involved in jasmonic acid metabolism, lipid signaling, and photosynthetic processes, while protein-protein interaction (PPI) analysis positioned ZmLOX proteins as central hubs in stress-related regulatory networks. Differential expression and qRT-PCR analyses revealed stress-specific (including heat, drought, salt, and cold) expression patterns, with ZmLOX2 and ZmLOX13 showing key roles in drought and cold tolerance, respectively. Conclusions: These findings provide new insights into the regulatory functions of ZmLOX genes, offering potential targets for enhancing maize resilience to abiotic stresses and improving agricultural productivity.

分类号:

  • 相关文献
作者其他论文 更多>>