A multiplex and regenerable surface plasmon resonance (MR-SPR) biosensor for DNA detection of genetically modified organisms
文献类型: 外文期刊
第一作者: An, Na
作者: An, Na;Zhang, Yukun;Wen, Tingting;Liu, Weixiao;Li, Liang;Jin, Wujun;Li, Kai;Liu, Gang
作者机构:
关键词: Plasmon resonance biosensor; Genetically modified organisms; Biosensor; Regenerable; Label-free
期刊名称:TALANTA ( 影响因子:6.057; 五年影响因子:5.386 )
ISSN: 0039-9140
年卷期: 2021 年 231 卷
页码:
收录情况: SCI
摘要: The continuous advancement of analytical technology has provided methods with increasing sensitivity and precision to detect genetically modified organisms (GMOs). Novel analytical strategy-based detection methods are alternatives to conventional polymerase chain reaction (PCR)-mediated assays, which are still the gold standard in this field. However, PCR primers and probes cannot be reused, which makes the technique uneconomical. Surface plasmon resonance (SPR) is an optical and label-free technique for studying ligand-analyte interactions, especially for DNA hybridization, and several SPR biosensors have been described for the detection of nucleic acids. Here, a multiplexed, regenerable and real-time SPR biosensor for the detection of GMOs is described. A biosensor was constructed for qualitative detection of T-nos, CaMV35S and cry1A and had good specificity and sensitivity. The limit of detection (LOD) of this biosensor was 0.1 nM without any signal amplification. Furthermore, our biosensor could be stably regenerated more than 100 times over at least 20 days and showed good reproducibility. This nucleic acid SPR biosensor has potential for application in other types of biological detection.
分类号:
- 相关文献
作者其他论文 更多>>
-
First Report and Genetic Characterization of Border Disease Virus in Sheep from Hulunbuir, Northeastern China
作者:Yuan, Yongxu;Li, Liang;Liu, Ziyan;Liu, Quan;Wang, Zedong;Yuan, Yongxu;Liu, Ziyan;Xu, Wenbo;Liu, Ning;Sui, Liyan;Zhao, Yinghua;Liu, Quan;Wang, Zedong;Yang, Xing;Wang, Wei
关键词:
-
A highly susceptible hACE2-transgenic mouse model for SARS-CoV-2 research
作者:Liu, Gang;Zhang, Min;Han, Xuelian;Wei, Yuwei;Sun, Yali;Cao, Xiangwen;Wang, Yuan;Li, Min;Zhao, Guangyu;Yin, Qi;Sun, Yansong;Wu, Baolei;Zhang, Cheng;Guo, Zhendong;Zhang, Cheng;Guo, Zhendong;Wang, Yan;Li, Li;Wang, Rongjuan;Li, Yalan;Sun, Yali;Cao, Xiangwen;Zhao, Guangyu;Ke, Yuehua
关键词:ACE2; inflammatory response; lung injury; mouse model; SARS-CoV-2
-
Different Infectivity of Swine Enteric Coronaviruses in Cells of Various Species
作者:Li, Zhongyuan;Chen, Yunyan;Li, Liang;Xue, Mei;Feng, Li
关键词:TGEV; PEDV; PDCoV; replication; aminopeptidase N (APN)
-
NLRP1 restricts porcine deltacoronavirus infection via IL-11 inhibiting the phosphorylation of the ERK signaling pathway
作者:He, Haojie;Li, Yongfeng;Chen, Yunyan;Chen, Jianfei;Li, Zhongyuan;Li, Liang;Shi, Da;Zhang, Xin;Shi, Hongyan;Xue, Mei;Feng, Li
关键词:porcine deltacoronavirus; nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 1; interleukin-11; ERK signaling; anti-coronavirus
-
Biocontrol mechanism of Bacillus siamensis sp. QN2MO-1 against tomato fusarium wilt disease during fruit postharvest and planting
作者:Zhang, Miaoyi;Li, Xiaojuan;Qi, Dengfeng;Zhou, Dengbo;Chen, Yufeng;Feng, Junting;Wei, Yongzan;Zhao, Yankun;Li, Kai;Wang, Wei;Xie, Jianghui;Zhang, Miaoyi;Li, Xiaojuan;Qi, Dengfeng;Zhou, Dengbo;Chen, Yufeng;Feng, Junting;Wei, Yongzan;Zhao, Yankun;Li, Kai;Wang, Wei;Xie, Jianghui;Zhang, Lu;Pan, Yongbo
关键词:Bacillus siamensis; Tomato fusarium wilt; Biological control; Whole genome sequencing
-
GACDNet:Mapping winter wheat by generative adversarial cross-domain networks with transformer integration for zero-sample extraction
作者:Wang, Chunyang;Gu, Yanan;Xu, Zhaozhao;Wang, Chunyang;Li, Kai;Zhao, Zongze;Yang, Wei;Wang, Xinbing;Wang, Jian
关键词:Domain generalization; Contrast learning; Cross-domain; Image classification; Winter wheat
-
Chromosome stability of synthetic Triticum turgidum-Aegilops umbellulata hybrids
作者:Song, Zhongping;Zuo, Yuanyuan;Li, Wenjia;Dai, Shoufen;Liu, Gang;Yan, Zehong;Pu, Zongjun;Pu, Zongjun;Song, Zhongping
关键词:Unreduced gametes; Turgidum turgidum-Aegilops umbellulata; Variation in chromosome number and structure; Chromosome loss and gain; Molecular cytogenetics