Genotypic variation in element concentrations in brown rice from Yunnan landraces in China

文献类型: 外文期刊

第一作者: Zeng, Yawen

作者: Zeng, Yawen;Pu, Xiaoying;Du, Juan;Yang, Shuming;Zeng, Yawen;Pu, Xiaoying;Du, Juan;Yang, Shuming;Zeng, Yawen;Wang, Luxiang;Liu, Jiafu;Zhang, Hongliang;Zhang, Hongliang

作者机构:

关键词: brown rice;core collection;element concentrations;genotypical difference;SSR markers

期刊名称:ENVIRONMENTAL GEOCHEMISTRY AND HEALTH ( 影响因子:4.609; 五年影响因子:4.677 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The mineral elements present in brown rice play an important physiological role in global human health. We investigated genotypic variation of eight of these elements (P, K, Ca, Mg, Fe, Zn, Cu, and Mn) in 11 different grades of brown rice on the basis of the number and distance coefficients of 282 alleles for 20 simple sequence repeat (SSR) markers. Six-hundred and twenty-eight landraces from the same field in Yunnan Province, one of the largest centers of genetic diversity of rice (Oryza sativa L.) in the world, formed our core collection. The mean concentrations (mg kg~(-1)) of the eight elements in brown rice for these landraces were P (3,480) > K (2,540) > Mg (1,480) > Ca (157) > Zn (32.8) > Fe (32.0) > Cu (13.6) > Mn (13.2). Mean P concentrations in brown rice were 6.56 times total soil P, so the grains are important in tissue storage of P, but total soil K is 7.82 times mean K concentrations in brown rice. The concentrations of the eight elements in some grades of brown rice, on the basis of the number and distance coefficients of alleles for 20 SSR markers for the landraces, were significantly different (P < 0.05), and further understanding of the relationship between mineral elements and gene diversity is needed. There was large variation in element concentrations in brown rice, ranging from 2,160 to 5,500 mg P kg~(-1), from 1,130 to 3,830 mg K kg~(-1), from 61.8 to 488 mg Ca kg~(-1), from 864 to 2,020 mg Mg kg~(-1), from 0.40 to 147 mg Fe kg~(-1), from 15.1 to 124 mg Zn kg~(-1), from 0.10 to 59.1 mg Cu kg~(-1), and from 6.7 to 26.6 mg Mn kg~(-1). Therefore, germplasm evaluations for Ca, Fe, and Zn concentrations in rice grains have detected up to sevenfold genotypic differences, suggesting that selection for high levels of Ca, Fe, and Zn in breeding for mass production is a feasible approach. Increasing the concentrations of Ca, Fe, and Zn in rice grains will help alleviate chronic Ca, Zn, and Fe deficiencies in many areas of the world.

分类号: NULL

  • 相关文献

[1]Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. Zhang, Ruifen,Khan, Sher Ali,Chi, Jianwei,Wei, Zhencheng,Zhang, Yan,Deng, Yuanyuan,Liu, Lei,Zhang, Mingwei. 2018

[2]The PLS calibration model optimization and determination of rice protein content by near-infrared reflectance spectroscopy. Li, JX,Min, SG,Zhang, HL,Yan, YL,Luo, CB,Li, ZC. 2006

[3]Correlation of Mineral Elements Between Milled and Brown Rice and Soils in Yunnan Studied by ICP-AES. Zeng Ya-wen,Du Juan,Yang Shu-ming,Wang Yu-chen,Sun Zheng-hai,Pu Xiao-ying,Du Wei,Wang Lu-xiang,Li Qi-wan,Zeng Ya-wen,Wang Yu-chen,Sun Zheng-hai. 2009

[4]Determination of Mineral Elements in Brown Rice of Near-Isogenic Lines Population for Japonica Rice by ICP-AES. Wang Lu-xiang,Li Qi-wan,Zeng Ya-wen,Sun Zheng-hai,Yang Shu-ming,Du Juan,Pu Xiao-ying,Du Wei,Zeng Ya-wen,Xiao Feng-hui,Sun Zheng-hai. 2008

[5]Phenolic Compounds and Antioxidant Capacity of Brown Rice in China. Ye, Lingxu,Ma, Xiaojun,Ye, Lingxu,Zhou, Sumei,Liu, Liya,Zhong, Kui,Zhou, Xianrong,Liu, Xingxun,Liu, Lei,Waters, Daniel L. E..

[6]Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Pang, Yuehan,Ahmed, Sulaiman,Xu, Yanjie,Bao, Jinsong,Beta, Trust,Zhu, Zhiwei,Shao, Yafang. 2018

[7]Assessment and genetic analysis of heavy metal content in rice grain using an Oryza sativa x O-rufipogon backcross inbred line population. Huang, De-run,Fan, Ye-yang,Hu, Biao-lin,Zhuang, Jie-yun,Huang, De-run,Fan, Ye-yang,Hu, Biao-lin,Zhuang, Jie-yun,Hu, Biao-lin,Xiao, Ye-qing,Chen, Da-zhou,Hu, Biao-lin,Xiao, Ye-qing,Chen, Da-zhou. 2018

[8]Mapping QTLs for Mineral Element Contents in Brown and Milled Rice Using an Oryza sativa x O. rufipogon Backcross Inbred Line Population. Hu, B. -L.,Huang, D. -R.,Fan, Y. -Y.,Zhuang, J. -Y.,Hu, B. -L.,Huang, D. -R.,Fan, Y. -Y.,Zhuang, J. -Y.,Hu, B. -L.,Xiao, Y. -Q.,Chen, D. -Z.,Hu, B. -L.,Xiao, Y. -Q.,Chen, D. -Z..

[9]A RAPID ELECTROCHEMICAL MONITORING PLATFORM FOR SENSITIVE DETERMINATION OF THIAMETHOXAM BASED ON beta-CYCLODEXTRIN-GRAPHENE COMPOSITE. Zhai, Xingchen,Yang, Xin,Wang, Jing,Zhai, Xingchen,Zhang, Hua,Zhang, Min,Yang, Xin,Gu, Cheng,Zhao, Haitian,Wang, Zhenyu,Dong, Aijun,Wang, Jing,Zhou, Guopeng. 2017

[10]Zinc Concentration in Rice (Oryza sativa L.) Grains and Allocation in Plants as Affected by Different Zinc Fertilization Strategies. Yin, HongJuan,Zhang, FuSuo,Zou, ChunQin,Yin, HongJuan,Zhang, FuSuo,Zou, ChunQin,Gao, XiaoPeng,Stomph, TjeerdJan,Li, LuJiu.

[11]Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Ti, Huihui,Zhang, Ruifen,Zhang, Mingwei,Li, Qing,Wei, Zhencheng,Zhang, Yan,Tang, Xiaojun,Deng, Yuanyuan,Liu, Lei,Ma, Yongxuan.

[12]Prediction of Cadmium content in brown rice using near-infrared spectroscopy and regression modelling techniques. Li, Gaoyang,Shan, Yang,Zhu, Xiangrong,Li, Gaoyang,Shan, Yang.

[13]Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Ti, Huihui,Zhang, Ruifen,Li, Qing,Wei, Zhencheng,Zhang, Mingwei.

[14]Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Li, Y,Shi, YS,Cao, YS,Wang, TY. 2004

[15]The Zonal Characterization of Elemental Concentrations in Brown Rice of Core Collection for Rice Landrace in Yunnan Province by ICP-AES. Zeng Ya-wen,Pu Xiao-ying,Du Juan,Yang Shu-ming,Tai Li-mei,Wang Lu-xiang,Liu Jia-fu,Zeng Ya-wen,Tai Li-mei. 2009

[16]Analysis of genetic diversity and construction of core collection of local mulberry varieties from Shanxi Province based on ISSR marker. Lin, Zhang,Sheng, Qiang,Lin, Zhang,guo, Zhao Wei,jia, Shen Xing,Li, Liu,Lin, Zhang,bai, Chen Jun,Yong, Huang,Yong, Huang,jia, Shen Xing. 2011

[17]Studies on sampling schemes for the establishment of corecollection of rice landraces in Yunnan, China. Li, ZC,Zhang, HL,Zeng, YW,Yang, ZY,Shen, SQ,Sun, CQ,Wang, XK. 2002

[18]Genetic diversity and structure of the core collection for maize inbred lines in China. Yu, Y.,Wang, R.,Shi, Y.,Song, Y.,Wang, T.,Li, Y.. 2007

[19]Genetic diversity and construction of core collection in Chinese wheat genetic resources. Hao ChenYang,Dong YuChen,Wang LanFen,You GuangXia,Zhang HongNa,Ge HongMei,Jia JiZeng,Zhang XueYong.

[20]Establishment of a Core Collection for the Chinese annual wild soybean (Glycine Soja). Zhao, LM,Dong, YS,Li, B,Hao, S,Wang, KJ,Li, XH.

作者其他论文 更多>>