Cloning and characterization of a gene encoding cysteine proteases from senescent leaves of Gossypium hirsutum

文献类型: 外文期刊

第一作者: Shen, FF

作者: Shen, FF;Yu, SX;Han, XL;Fan, SL

作者机构:

关键词: cotton;senescence;cysteine protease;programmed cell death

期刊名称:CHINESE SCIENCE BULLETIN ( 影响因子:1.649; 五年影响因子:1.738 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A gene encoding a cysteine proteinase was isolated from senescent leave of cotton (Gossypium hirsutum) cv liaomian No. 9 by utilizing rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR), and a set of consensus oligonudeotide primers was designed to anneal the conserved sequences of plant cysteine protease genes. The cDNA, which designated Ghcysp gene, contained 1368 bp terminating in a poly(A)+ trail, and included a putative 5 (98 bp) and a 3'(235 bp) non-coding region. The opening reading frame (ORF) encodes polypeptide 344 amino acids with the predicted molecular mass of 37.88 kD and theoretical pi of 4.80. A comparison of the deduced amino acid sequence with the sequence in the GenBank database has shown considerable sequence similarity to a novel family of plant cysteine proteases. This putative cotton Ghcysp protein shows from 67 percent to 82 percent identity to the other plants. All of them share catalytic triad of residues, which are highly conserved in three regions. Hydropaths analysis of the amino acid sequence shows that the Ghcysp is a potential membrane protein and localizes to the vacuole, which has a transmembrane helix between resides 7-25. A characteristic feature of Ghcysp is the presence of a putative vacuole-targeting signal peptide of 19-amino acid residues at the N-terminal region. The expression of Ghcysp gene was determined using northern blot analysis. The Ghcysp mRNA levels are high in development senescent leaf but below the limit of detection in senescent root, hypocotyl, faded flower, 6 d post anthesis ovule, and young leaf.

分类号: N1

  • 相关文献

[1]Isolation and characterization of a cDNA encoding a papain-like cysteine protease from alfalfa. Yan, Longfeng,Han, Jianguo,Sun, Yan,Yan, Longfeng,Yang, Qingchuan,Kang, Junmei,Liu, Zhipeng,Wu, Mingsheng.

[2]Programmed cell death is responsible for replaceable bud senescence in chestnut (Castanea mollissima BL.). Wang, Guangpeng,Zhang, Zhihong,Zhao, Guiling,Wang, Guangpeng,Kong, Dejun,Liu, Qingxiang. 2012

[3]Mechanisms and regulation of senescence and maturity performance in cotton. Chen, Yizhen,Dong, Hezhong,Chen, Yizhen.

[4]Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. Zhang, C. -J.,Chu, H. -J.,Chen, G. -X.,Shi, D. -W.,Zuo, M.,Wang, J.,Lu, C. -G.,Wang, P.,Chen, L..

[5]Molecular characterization of a cathepsin F-like protease in Trichinella spiralis. Qu, Zi-gang,Ma, Xue-ting,Li, Wen-hui,Zhang, Nian-zhang,Yue, Long,Cui, Jian-min,Cai, Jian-ping,Jia, Wan-zhong,Fu, Bao-quan,Cai, Jian-ping,Jia, Wan-zhong,Fu, Bao-quan. 2015

[6]Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function. Tang, Zeli,Sun, Hengchang,Chen, TingJin,Lin, Zhipeng,Jiang, Hongye,Zhou, Xinyi,Ren, Pengli,Yu, Jinyun,Li, Xuerong,Xu, Jin,Huang, Yan,Yu, Xinbing,Tang, Zeli,Sun, Hengchang,Chen, TingJin,Lin, Zhipeng,Jiang, Hongye,Zhou, Xinyi,Ren, Pengli,Yu, Jinyun,Li, Xuerong,Xu, Jin,Huang, Yan,Yu, Xinbing,Tang, Zeli,Sun, Hengchang,Chen, TingJin,Lin, Zhipeng,Jiang, Hongye,Zhou, Xinyi,Ren, Pengli,Yu, Jinyun,Li, Xuerong,Xu, Jin,Huang, Yan,Yu, Xinbing,Shi, Cunbin,Pan, Houjun,Chang, Ouqin.

[7]Identification and characterization of a cathepsin-L-like peptidase in Eimeria tenella. Liu, Renqiang,Liu, Aijun,Wang, Ming,Ma, Xueting,Cai, Jianping,Zhang, Lei,Wang, Ming.

[8]Cloning and characterization of a cathepsin L-like cysteine protease from Taenia pisiformis. Wang, Qiuxia,Zhang, Shaohua,Luo, Xuenong,Hou, Junling,Zhu, Xueliang,Cai, Xuepeng.

[9]Histological and Ultrastructural Observation Reveals Significant Cellular Differences between Agrobacterium Transformed Embryogenic and Non-embryogenic Calli of Cotton. Shang, Hai-Hong,Liu, Chuan-Liang,Zhang, Chao-Jun,Li, Feng-Lian,Hong, Wei-Dong,Li, Fu-Guang.

[10]The expression pattern of a rice proteinase inhibitor gene OsPI8-1 implies its role in plant development. Wang, Jiang,Shi, Zhen-Ying,Wan, Xin-Shan,Zhang, Jing-Liu,Shen, Ge-Zhi. 2008

[11]Nitric oxide suppresses aluminum-induced programmed cell death in peanut (Arachis hypoganea L.) root tips by improving mitochondrial physiological properties. Huang, Wenjing,Oo, Thet Lwin,Gu, Minghua,Zhan, Jie,Wang, Aiqin,He, Long-Fei,He, Huyi,He, Long-Fei. 2018

[12]Programmed cell death in relation to petal senescence in ornamental plants. Zhou, Y,Wang, CY,Ge, H,Hoeberichts, FA,Visser, PB. 2005

[13]iTRAQ Mitoproteome Analysis Reveals Mechanisms of Programmed Cell Death in Arabidopsis thaliana Induced by Ochratoxin A. Xu, Wentao,Luo, Yunbo,Huang, Kunlun,Wang, Yan,Wang, Yan,Peng, Xiaoli,Yang, Zhuojun,Zhao, Weiwei,Xu, Wentao,Hao, Junran,Wu, Weihong,Shen, Xiao Li,Luo, Yunbo,Huang, Kunlun,Peng, Xiaoli,Shen, Xiao Li. 2017

[14]Comparative transcriptomics provide insight into the morphogenesis and evolution of fistular leaves in Allium. Liu, Touming. 2017

[15]Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells. Jiao, Jiao,Sun, Ling,Hao, Yu,Zhu, Xiaoping,Liang, Yuancun,Zhou, Benguo,Gao, Zhengliang. 2014

[16]Sulfated lentinan induced mitochondrial dysfunction leads to programmed cell death of tobacco BY-2 cells. Wang, Jie,Shen, Lili,Qian, Yumei,Yang, Jinguang,Wang, Fenglong,Wang, Yaofeng.

[17]Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis. Liu, Hui,Deng, Zhi,Li, Dejun,Chen, Jiangshu,Wang, Sen,Hao, Lili.

[18]Comparative Transcriptomic Analysis Reveals That Ethylene/H2O2-Mediated Hypersensitive Response and Programmed Cell Death Determine the Compatible Interaction of Sand Pear and Alternaria alternata. Wang, Hong,Lin, Jing,Chang, Youhong,Jiang, Cai-Zhong,Jiang, Cai-Zhong. 2017

[19]Suppression of OsVPE3 Enhances Salt Tolerance by Attenuating Vacuole Rupture during Programmed Cell Death and Affects Stomata Development in Rice. Lu, Wenyun,Guo, Fu,Wang, Mingqiang,Zeng, Zhanghui,Han, Ning,Yang, Yinong,Zhu, Muyuan,Bian, Hongwu,Deng, Minjuan,Yang, Yinong,Yang, Yinong. 2016

[20]Identification and analysis of the metacaspase gene family in tomato. Liu, Hui,Liu, Jian,Wei, Yongxuan.

作者其他论文 更多>>