Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine
文献类型: 外文期刊
第一作者: Wang, Gui-Ping
作者: Wang, Gui-Ping;Hui, Zhen;Li, Feng;Zhao, Mei-Rong;Zhang, Jin;Wang, Wei;Wang, Gui-Ping
作者机构:
关键词: carbon dioxide: 124-38-9;antioxidants;antioxidative enzymes;glycinebetaine: 107-43-7;overaccumulation;Gene Name;Triticum aestivum BADH gene [Gramineae]: Triticum aestivum betaine aldehyde dehydrogenase gene;expr;crop yield;drought tolerance;enzyme activity;stomatal conductance;water deprivation;transpiration rate;osmotic adjustment;photosynthesis rate;heat tolerance;relative water content;antioxidative defense system
期刊名称:PLANT BIOTECHNOLOGY REPORTS ( 影响因子:2.01; 五年影响因子:1.907 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Within their natural habitat, crops are often subjected to drought and heat stress, which suppress crop growth and decrease crop production. Causing overaccumulation of glycinebetaine (GB) has been used to enhance the crop yield under stress. Here, we investigated the response of wheat (Triticum aestivum L.) photosynthesis to drought, heat stress and their combination with a transgenic wheat line (T6) overaccumulating GB and its wild-type (WT) Shi4185. Drought stress (DS) was imposed by controlling irrigation until the relative water content (RWC) of the flag leaves decreased to between 78 and 82%. Heat stress (HS) was applied by exposing wheat plants to 40A degrees C for 4 h. A combination of drought and heat stress was applied by subjecting the drought-stressed plants to a heat stress as above. The results indicated that all stresses decreased photosynthesis, but the combination of drought and heat stress exacerbated the negative effects on photosynthesis more than exposure to drought or heat stress alone. Drought stress decreased the transpiration rate (Tr), stomatal conductance (Gs) and intercellular CO2 concentration (Ci), while heat stress increased all of these; the deprivation of water was greater under drought stress than heat stress, but heat stress decreased the antioxidant enzyme activity to a greater extent. Overaccumulated GB could alleviate the decrease of photosynthesis caused by all stresses tested. These suggest that GB induces an increase of osmotic adjustments for drought tolerance, while its improvement of the antioxidative defense system including antioxidative enzymes and antioxidants may be more important for heat tolerance.
分类号: Q94
- 相关文献
作者其他论文 更多>>
-
Nonstructural protein 14 of PDCoV promotes complement C3 expression via the activation of p38-MAPK-C/EBP pathway
作者:Chen, Zhuoqi;Fan, Liyuan;Shang, Hongqi;Xiao, Li;Wang, Wei;Guo, Rongli;Li, Jizong;Chen, Zhuoqi;Fan, Liyuan;Shang, Hongqi;Wang, Wei;Guo, Rongli;Li, Jizong;Li, Jizong;Li, Jizong;Li, Jizong;Li, Jizong;Zhong, Chunyan
关键词:PDCoV; C3; Nsp14; Complement; C/EBP-beta
-
Knockdown of the cap 'n ' collar isoform C gene increases the susceptibility of Agrotis ipsilon to chlorantraniliprole and phoxim
作者:Xiao, Qing-Hua;Zhang, Jin;Li, Mao -Ye;Liu, Su;Li, Wu -Ye;Yu, Jia-Min;Liu, Dong-Yang;Peng, Jiang -Nan
关键词:Black cutworm; CncC; RNA interference; Glutathione S -transferase; Insecticide detoxification
-
Genome-wide identification of Saccharum Sec14-like PITP gene family reveals that ScSEC14-1 is positively involved in disease resistance
作者:Su, Yachun;Feng, Jingfang;You, Chuihuai;Zang, Shoujian;Wang, Wei;Wang, Dongjiao;Mao, Huaying;Chen, Yao;Luo, Jun;Que, Youxiong;Su, Yachun;Su, Yachun;Sun, Tingting;Que, Youxiong
关键词:Sugarcane; Phosphatidylinositol transfer protein (PITP); Genome-wide identification; Pathogen infection; Disease resistance
-
Recent Progress Regarding Jasmonates in Tea Plants: Biosynthesis, Signaling, and Function in Stress Responses
作者:Zhang, Xin;Yu, Yongchen;Zhang, Jin;Qian, Xiaona;Li, Xiwang;Sun, Xiaoling;Zhang, Xin;Yu, Yongchen;Zhang, Jin;Qian, Xiaona;Li, Xiwang;Sun, Xiaoling
关键词:jasmonates; biosynthesis; tea plant; defense response; biotic stress; abiotic stress
-
First Report and Genetic Characterization of Border Disease Virus in Sheep from Hulunbuir, Northeastern China
作者:Yuan, Yongxu;Li, Liang;Liu, Ziyan;Liu, Quan;Wang, Zedong;Yuan, Yongxu;Liu, Ziyan;Xu, Wenbo;Liu, Ning;Sui, Liyan;Zhao, Yinghua;Liu, Quan;Wang, Zedong;Yang, Xing;Wang, Wei
关键词:
-
Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo
作者:Wu, Ximing;Wang, Wei;Wu, Ximing;Wang, Yijun;Yang, Mingchuan;Yang, Lumin;Wang, Fuming;Wu, Ximing;Wang, Ziqi;Zhang, Xiangchun;Wang, Dongxu
关键词:
-
Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications
作者:Qi, Qianhui;Wang, Wei;Shen, Qian;Geng, Jiaying;An, Weizhen;Wu, Qiong;Yu, Changmin;Shen, Qian;Geng, Jiaying;An, Weizhen;Wu, Qiong;Yu, Changmin;Qi, Qianhui;Yu, Changmin;Wang, Nan;Zhang, Yu;Li, Xue;Li, Lin
关键词:Biodegradation; Silica nanoparticles; Stimuli -responsive; Multiple frameworks; Biological applications