Postponed Application of Phosphorus and Potassium Fertilizers Mitigates the Damage of Late Spring Coldness by Improving Winter Wheat Root Physiology

文献类型: 外文期刊

第一作者: Fang, Hao

作者: Fang, Hao;Huang, Jinwei;Zhu, Xiatong;Ren, Jin;Huang, Jingyao;Zheng, Baoqiang;Chen, Xiang;Lin, Feifei;Li, Jincai;Hassan, Muhammad Ahmad;Li, Jincai

作者机构:

关键词: winter wheat; late spring coldness; optimizing phosphorus and potassium application; root physiology; nutrient accumulation

期刊名称:PLANTS-BASEL ( 影响因子:4.1; 五年影响因子:4.5 )

ISSN: 2223-7747

年卷期: 2024 年 13 卷 16 期

页码:

收录情况: SCI

摘要: Late spring coldness (LSC) is the main limiting factor threatening wheat yield and quality stability. Optimal nutrient management is beneficial in mitigating the harms of LSC by improving wheat root physiology. This study proposed a nutrient management strategy that postponed the application of phosphorus (P) and potassium (K), effectively strengthening wheat's defense against LSC. This experiment used the winter cultivar "Yannong19" (YN 19) as plant material for two consecutive years (2021-2022 and 2022-2023). Two fertilizer treatments were used: traditional P and K fertilizers application (R1: base fertilizer: jointing fertilizer = 10:0) and postponed P and K fertilizers application (R2: base fertilizer: jointing fertilizer = 5:5); wheat plants at the anther connective formation stage shifted to temperature-controlled phytotrons for normal (T0, 11 degrees C/4 h) and low temperatures (T1, 4 degrees C/4 h; T2, -4 degrees C/4 h) as treatments of LSC. The results showed that under low temperature (LT) treatment, compared with R1, the R2 treatment increased the concentrations of osmotic adjustment substances (soluble sugars and soluble protein contents by 6.2-8.7% and 3.0-8.9%), enhanced activities of antioxidant enzymes (superoxide dismutase, peroxidase and catalase activities by 2.2-9.1%, 6.2-9.7% and 4.2-8.4%), balanced the hormone concentrations (increased IAA and GA3 contents by 2.8-17.5% and 10.4-14.1% and decreased ABA contents by 7.2-14.3%), and reduced the toxicity (malondialdehyde, hydrogen peroxide content and O2- production rate by 5.7-12.4%, 17.7-22.8% and 19.1-19.1%) of the cellular membranes. Furthermore, the wheat root physiology in R2 significantly improved as the root surface area and dry weight increased by 5.0-6.6% and 4.7-6.6%, and P and K accumulation increased by 7.4-11.3% and 12.2-15.4% compared to R1, respectively. Overall, the postponed application of P and K fertilizers enhanced the physiological function of the root system, maintained root morphology, and promoted the accumulation of wheat nutrients under the stress of LSC.

分类号:

  • 相关文献
作者其他论文 更多>>