Exploring potential strategies for haploid induction based on double fertilization in plants
文献类型: 外文期刊
第一作者: Li, Tengyu
作者: Li, Tengyu;Wang, Chenlei;Pan, Jingwen;Tabusam, Javaria;Li, Yan;Yao, Jinbo;Chen, Wei;Ahmad, Zeeshan;Zhu, Shouhong;Zhang, Yongshan;Li, Tengyu;Jin, Shuangxia;Li, Tengyu;Houben, Andreas;Wang, Yazhong;Gao, Wei;Rong, Junkang
作者机构:
关键词: haploid induction; double fertilization; sperm DNA fragmentation; membrane fusion; uniparental chromosome elimination; ectopic expression
期刊名称:PLANT BIOTECHNOLOGY JOURNAL ( 影响因子:10.5; 五年影响因子:12.4 )
ISSN: 1467-7644
年卷期: 2025 年 23 卷 9 期
页码:
收录情况: SCI
摘要: Haploid induction (HI), an indispensable procedure in doubled haploid breeding, has attracted increasing attention in crop genetic improvement due to its ability to rapidly fix desirable traits in a homozygous state, thereby shortening the breeding cycle. However, HI has only been successfully implemented in a limited number of crops, and its underlying mechanisms remain largely enigmatic. This review summarizes five potential HI routes based on previous findings and the key events during the process of double fertilization in flowering plants. Among these HI methods, we suggest that sperm DNA fragmentation and ectopic expression of embryogenesis activator, as straightforward avenues for discovering new HI-related genes. We also emphasize that the combination of genome editing techniques with HI is a promising strategy to accelerate crop improvement and doubled haploid breeding. We envision that the proposed directions can pave the way for improving and deepening our understanding of HI mechanisms.
分类号:
- 相关文献
作者其他论文 更多>>
-
Integration of transcriptome, histopathology, and physiological indicators reveals regulatory mechanisms of largemouth bass ( Micropterus salmoides) in response to carbonate alkalinity stress
作者:Hua, Jixiang;Xi, Bingwen;Qiang, Jun;Hua, Jixiang;Tao, Yifan;Lu, Siqi;Li, Yan;Dong, Yalun;Jiang, Bingjie;Xi, Bingwen;Qiang, Jun
关键词:Micropterus salmoides; Carbonate alkalinity stress; Tissue damage; Serum biological chemistry; RNA-seq
-
Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton
作者:Zeng, Qing;Wang, Junjuan;Wang, Shuai;Lu, Xuke;Li, Yan;Ye, Wuwei;Yin, Zujun;Peng, Fanjia;Bakhsh, Allah;Qaraevna, Bobokhonova Zebinisso;Ye, Wuwei;Yin, Zujun
关键词:
-
Effect of combined nitrogen and phosphorus fertilization on summer maize yield and soil fertility in coastal saline-alkali land
作者:Ma, Changjian;Wang, Yue;Liu, Lining;Wang, Xuejun;Sun, Zeqiang;Li, Yan;Ma, Changjian;Wang, Yue;Wu, Wenbiao;Hou, Peng;Li, Bowen;Yuan, Huabin
关键词:Grain yield; Biomass yield; Fertilizer physiological efficiency; Coastal saline-alkali land
-
Comparative genomic analysis reveals the difference of NLR immune receptors between anthracnose-resistant and susceptible sorghum cultivars
作者:Zhang, Ji-Wei;Li, Jin-Yang;Yu, Zhi-Fan;Chang, Xin-Ya;Han, Jun-Ru;Xia, Jing-Yang;Kami, Yam Bahadur;Wang, He;Li, Yan;Wang, Wen-Ming;Sun, Yuan-Tao;Ni, Xian-Lin;Li, Ling;Wang, Song-Tao
关键词:Sorghum; Anthracnose; NLR receptor; Colletotrichum sublineola; Genetic variation; Differential gene expression
-
The role of the nitrate transporter NRT1.1 in plant iron homeostasis and toxicity on ammonium
作者:Li, Guangjie;Zhang, Lin;Wang, Yanqin;Li, Yan;Wang, Zhaoyue;Shi, Weiming;Kronzucker, Herbert J.;Kronzucker, Herbert J.;Chen, Gui
关键词:Ammonium toxicity; Iron; Nitrate; NRT1.1; Root growth
-
Context-dependent response of crop pests to landscape composition
作者:Yang, Long;Pan, Yunfei;Wyckhuys, Kris A. G.;Li, Minlong;Wang, Kaitao;Liu, Bing;Liu, Yangtian;Jia, Shuangshuang;Li, Qian;Li, Yan;Lu, Yanhui;Wyckhuys, Kris A. G.;Desneux, Nicolas
关键词:Agroecology; context dependency; ecological based pest management; ecological intensification; host quality
-
TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis
作者:Dong, Feiyan;Liu, Yide;Zhang, Huadong;Li, Yaqian;Chen, Sheng;Wang, Shuailei;Zhu, Zhanwang;Liu, Yike;Song, Jinghan;Li, Yan
关键词:Wheat;
TaSnRK3.23B ; Ectopic expression; Drought stress; CBL proteins