Water level regimes can regulate the influences of microplastic pollution on carbon loss in paddy soils: Insights from dissolved organic matter and carbon mineralization

文献类型: 外文期刊

第一作者: Lu, Xiaonan

作者: Lu, Xiaonan;Wang, Lili;Hu, Runan;Li, Tingxuan;Guggenberger, Georg;Sun, Yue

作者机构:

关键词: Dissolved organic carbon; Enzyme activities; Polyethylene; Microbial community; Microplastics; Soil organic carbon mineralization

期刊名称:JOURNAL OF ENVIRONMENTAL MANAGEMENT ( 影响因子:8.4; 五年影响因子:8.6 )

ISSN: 0301-4797

年卷期: 2025 年 381 卷

页码:

收录情况: SCI

摘要: The persistence of farmland microplastic (MP) pollution has raised significant concerns regarding its effects on soil organic carbon (SOC) pools in the context of soil pollution but also of global climate change. Nevertheless, the effect of MPs on SOC mineralization as well as dissolved organic carbon (DOC) transformation with different water levels in paddy soils remained uncertain. In this study, we investigated the effect of micro polyethylene (PE) on SOC decomposition in paddy soils under alternating wet and dry (AWD) and continuous flooding (CF) conditions through a 205-day microcosm experiment. Polyethylene addition reduced cumulative CO2 emissions by 5.1-14.8 % under both water conditions. The presence of PE influenced SOC mineralization under CF conditions by diminishing the activity of cellobiohydrolase enzymes and increasing the microbial community diversity. Conversely, at AWD the addition of PE impeded SOC mineralization by reducing the activity of polyphenol oxidase enzymes. However, PE addition resulted in higher DOC content and at low dose of PE addition (0.25 % w/w) increased DOM bioavailability. The most significantly positive effect was found with the addition of 1 % w/w PE, which increased DOC content by 37.2 % and 18.5 % compared to Control (CK) under AWD and CF conditions, respectively. The strong correlation observed between DOC and mineral-associated organic carbon (MAOC) concentrations might result from DOC adsorbed to mineral surfaces to form MAOC and then affect SOC mineralization. Accordingly, AWD is a more efficient management to attenuate the impact of MPs on SOC decomposition compared to CF. Our study is noteworthy in the development of sustainable agricultural practice management in plastic-contaminated soil-crop systems.

分类号:

  • 相关文献
作者其他论文 更多>>